IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5878-d1213077.html
   My bibliography  Save this article

Engineering-Scale Integrated Energy System Data Projection Demonstration via the Dynamic Energy Transport and Integration Laboratory

Author

Listed:
  • Ramon Yoshiura

    (Idaho National Laboratory (INL), 2525 N. Fremont Ave., Idaho Falls, ID 83415, USA
    These authors contributed equally to this work.)

  • Sarah Creasman

    (Idaho National Laboratory (INL), 2525 N. Fremont Ave., Idaho Falls, ID 83415, USA
    These authors contributed equally to this work.)

  • Aaron Epiney

    (Idaho National Laboratory (INL), 2525 N. Fremont Ave., Idaho Falls, ID 83415, USA)

Abstract

The objective of this study is to demonstrate and validate the Dynamic Energy Transport and Integration Laboratory (DETAIL) preliminary scaling analysis using Modelica language system-code Dymola. The DETAIL preliminary scaling analysis includes a multisystem integral scaling package between thermal-storage and hydrogen-electrolysis systems. To construct the system of scaled equations, dynamical system scaling (DSS) was applied to all governing laws and closure relations associated with the selected integral system. The existing Dymola thermal-energy distribution system (TEDS) facility and high-temperature steam electrolysis (HTSE) facility models in the Idaho National Laboratory HYBRID repository were used to simulate a test case and a corresponding scaled case for integrated system HYBRID demonstration and validation. The DSS projected data based on the test-case simulations and determined scaling ratios were generated and compared with scaled case simulations. The preliminary scaling analysis performance was evaluated, and scaling distortions were investigated based on data magnitude, sequence, and similarity. The results indicated a necessity to change the normalization method for thermal storage generating optimal operating conditions of 261 kW power and mass flow rate of 6.42 kg/s and the possibility of reselecting governing laws for hydrogen electrolysis to improve scaling predictive properties. To enhance system-scaling similarity for TEDS and HTSE, the requirement for scaling validation via physical-facility demonstration was identified.

Suggested Citation

  • Ramon Yoshiura & Sarah Creasman & Aaron Epiney, 2023. "Engineering-Scale Integrated Energy System Data Projection Demonstration via the Dynamic Energy Transport and Integration Laboratory," Energies, MDPI, vol. 16(16), pages 1-40, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5878-:d:1213077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xing, Xuetao & Lin, Jin & Song, Yonghua & Hu, Qiang & Zhou, You & Mu, Shujun, 2018. "Optimization of hydrogen yield of a high-temperature electrolysis system with coordinated temperature and feed factors at various loading conditions: A model-based study," Applied Energy, Elsevier, vol. 232(C), pages 368-385.
    2. Konor Frick & Shannon Bragg-Sitton & Cristian Rabiti, 2020. "Modeling the Idaho National Laboratory Thermal-Energy Distribution System (TEDS) in the Modelica Ecosystem," Energies, MDPI, vol. 13(23), pages 1-25, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramon Yoshiura & Alexander Duenas & Aaron Epiney, 2022. "Dynamical System Scaling of a Thermocline Thermal Storage System in the Thermal Energy Distribution System (TEDS) Facility," Energies, MDPI, vol. 15(12), pages 1-27, June.
    2. Mastropasqua, Luca & Pecenati, Ilaria & Giostri, Andrea & Campanari, Stefano, 2020. "Solar hydrogen production: Techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system," Applied Energy, Elsevier, vol. 261(C).
    3. Xia, Zhiping & Zhao, Dongqi & Li, Yuanzheng & Deng, Zhonghua & Kupecki, Jakub & Fu, Xiaowei & Li, Xi, 2023. "Control-oriented dynamic process optimization of solid oxide electrolysis cell system with the gas characteristic regarding oxygen electrode delamination," Applied Energy, Elsevier, vol. 332(C).
    4. Worsham, Elizabeth K. & Terry, Stephen D., 2022. "Static and dynamic modeling of steam integration for a NuScale small modular reactor and pulp and paper mill coupling for carbon-neutral manufacturing," Applied Energy, Elsevier, vol. 325(C).
    5. Athanasios Ioannis Arvanitidis & Vivek Agarwal & Miltiadis Alamaniotis, 2023. "Nuclear-Driven Integrated Energy Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(11), pages 1-23, May.
    6. Jiming Yuan & Zeming Li & Benfeng Yuan & Guoping Xiao & Tao Li & Jian-Qiang Wang, 2023. "Optimization of High-Temperature Electrolysis System for Hydrogen Production Considering High-Temperature Degradation," Energies, MDPI, vol. 16(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5878-:d:1213077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.