IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5726-d1207631.html
   My bibliography  Save this article

Impact of Street Lighting Level on Floodlights

Author

Listed:
  • Henryk Wachta

    (Department of Power Electronics and Power Engineering, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland)

  • Krzysztof Baran

    (Department of Power Electronics and Power Engineering, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland)

  • Sebastian Różowicz

    (Department of Industrial Electrical Engineering and Automatic Control, Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego St, 25-314 Kielce, Poland)

Abstract

The article presents selected results of research related to the use of outdoor lighting, mainly street lighting, in the design of facility illumination. The indicated subject matter primarily concerns architectural structures that are located in urbanized city spaces and in the strict centers of old cities. It is in these areas that there is usually a significant saturation of historic secular and sacred buildings with significant tourist values. At the same time, the immediate surroundings of the structures are usually wrapped by a dense network of street lighting infrastructure. This illumination can be a major setback in the process of illumination planning. Therefore, it is necessary to take into account the extent of this impact on the planned illumination work, related to the selection, mounting, and direction of illumination equipment. This is related to the distance of the street luminaires from the facade, the height of their installation, the distance of the poles from each other, the power of the street luminaires, and the luminous flux distribution of the luminaires used. The purpose of the work undertaken was to analyze the extent to which outdoor lighting influences the planned illumination of an architectural structure and to explore the possibility of its potential use as a component of illumination. Analytical work was conducted at two levels of detail using advanced graphical computer applications. After general considerations and the derivation of conclusions, an example of illumination of a large sacral building was realized successfully using the element of street lighting as a component of illumination.

Suggested Citation

  • Henryk Wachta & Krzysztof Baran & Sebastian Różowicz, 2023. "Impact of Street Lighting Level on Floodlights," Energies, MDPI, vol. 16(15), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5726-:d:1207631
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5726/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5726/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
    2. Antoni Różowicz & Henryk Wachta & Krzysztof Baran & Marcin Leśko & Sebastian Różowicz, 2022. "Arrangement of LEDs and Their Impact on Thermal Operating Conditions in High-Power Luminaires," Energies, MDPI, vol. 15(21), pages 1-17, November.
    3. Michelangelo Scorpio & Roberta Laffi & Massimiliano Masullo & Giovanni Ciampi & Antonio Rosato & Luigi Maffei & Sergio Sibilio, 2020. "Virtual Reality for Smart Urban Lighting Design: Review, Applications and Opportunities," Energies, MDPI, vol. 13(15), pages 1-26, July.
    4. Rafał Krupiński & Wolfgang Scherzer & Piotr Pracki & Andrzej Wiśniewski & Krzysztof Skarżyński, 2023. "A Smart Floodlighting Design System Based on Raster Images," Energies, MDPI, vol. 16(10), pages 1-18, May.
    5. Rafał Krupiński & Henryk Wachta & Wojciech Maciej Stabryła & Cedric Büchner, 2021. "Selected Issues on Material Properties of Objects in Computer Simulations of Floodlighting," Energies, MDPI, vol. 14(17), pages 1-24, September.
    6. Sebastian Słomiński & Magdalena Sobaszek, 2020. "Intelligent Object Shape and Position Identification for Needs of Dynamic Luminance Shaping in Object Floodlighting and Projection Mapping," Energies, MDPI, vol. 13(23), pages 1-21, December.
    7. Krzysztof Skarżyński & Wojciech Żagan, 2022. "Quantitative Assessment of Architectural Lighting Designs," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafał Krupiński & Wolfgang Scherzer & Piotr Pracki & Andrzej Wiśniewski & Krzysztof Skarżyński, 2023. "A Smart Floodlighting Design System Based on Raster Images," Energies, MDPI, vol. 16(10), pages 1-18, May.
    2. Rafał Krupiński, 2020. "Virtual Reality System and Scientific Visualisation for Smart Designing and Evaluating of Lighting," Energies, MDPI, vol. 13(20), pages 1-17, October.
    3. Rafał Krupiński & Henryk Wachta & Wojciech Maciej Stabryła & Cedric Büchner, 2021. "Selected Issues on Material Properties of Objects in Computer Simulations of Floodlighting," Energies, MDPI, vol. 14(17), pages 1-24, September.
    4. Yoon, Y. & Jung, S. & Im, P. & Salonvaara, M. & Bhandari, M. & Kunwar, N., 2023. "Empirical validation of building energy simulation model input parameter for multizone commercial building during the cooling season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Darina Duplakova & Jan Duplak & Rastislav Kascak, 2022. "Ergonomic Rationalization Sequence of Digital Lighting Design in the Working Environment," IJERPH, MDPI, vol. 19(12), pages 1-19, June.
    6. Marco Casini, 2022. "Extended Reality for Smart Building Operation and Maintenance: A Review," Energies, MDPI, vol. 15(10), pages 1-36, May.
    7. Yang, Sungwoong & Wi, Seunghwan & Park, Ji Hun & Cho, Hyun Mi & Kim, Sumin, 2020. "Framework for developing a building material property database using web crawling to improve the applicability of energy simulation tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Rafał Krupiński, 2021. "Simulation and Analysis of Floodlighting Based on 3D Computer Graphics," Energies, MDPI, vol. 14(4), pages 1-17, February.
    9. Jaqueline Litardo & Ruben Hidalgo-Leon & Guillermo Soriano, 2021. "Energy Performance and Benchmarking for University Classrooms in Hot and Humid Climates," Energies, MDPI, vol. 14(21), pages 1-17, October.
    10. Krzysztof Skarżyński & Anna Rutkowska, 2023. "The Interplay between Parameters of Light Pollution and Energy Efficiency for Outdoor Amenity Lighting," Energies, MDPI, vol. 16(8), pages 1-14, April.
    11. Mariana Huskinson & Antonio Galiano-Garrigós & Ángel Benigno González-Avilés & M. Isabel Pérez-Millán, 2021. "Decision-Making Processes in Controlling Exposure to Sunlight Supported by Simulation Tools: A Case Study in Warm Weather," Energies, MDPI, vol. 14(14), pages 1-30, July.
    12. Massimiliano Masullo & Federico Cioffi & Jian Li & Luigi Maffei & Giovanni Ciampi & Sergio Sibilio & Michelangelo Scorpio, 2023. "Urban Park Lighting Quality Perception: An Immersive Virtual Reality Experiment," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    13. Karolina M. Zielinska-Dabkowska & Katarzyna Bobkowska, 2022. "Rethinking Sustainable Cities at Night: Paradigm Shifts in Urban Design and City Lighting," Sustainability, MDPI, vol. 14(10), pages 1-34, May.
    14. Dariusz Czyżewski, 2023. "The Photometric Test Distance in Luminance Measurement of Light-Emitting Diodes in Road Lighting," Energies, MDPI, vol. 16(3), pages 1-20, January.
    15. Michelangelo Scorpio & Davide Carleo & Martina Gargiulo & Pilar Chías Navarro & Yorgos Spanodimitriou & Parinaz Sabet & Massimiliano Masullo & Giovanni Ciampi, 2023. "A Review of Subjective Assessments in Virtual Reality for Lighting Research," Sustainability, MDPI, vol. 15(9), pages 1-25, May.
    16. Massimiliano Masullo & Federico Cioffi & Jian Li & Luigi Maffei & Michelangelo Scorpio & Tina Iachini & Gennaro Ruggiero & Antonio Malferà & Francesco Ruotolo, 2022. "An Investigation of the Influence of the Night Lighting in a Urban Park on Individuals’ Emotions," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    17. Ana Ogando-Martínez & Javier López-Gómez & Lara Febrero-Garrido, 2018. "Maintenance Factor Identification in Outdoor Lighting Installations Using Simulation and Optimization Techniques," Energies, MDPI, vol. 11(8), pages 1-13, August.
    18. Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    19. Ali Bagheri & Véronique Feldheim & Christos S. Ioakimidis, 2018. "On the Evolution and Application of the Thermal Network Method for Energy Assessments in Buildings," Energies, MDPI, vol. 11(4), pages 1-20, April.
    20. Sebastian Słomiński & Magdalena Sobaszek, 2021. "Dynamic Autonomous Identification and Intelligent Lighting of Moving Objects with Discomfort Glare Limitation," Energies, MDPI, vol. 14(21), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5726-:d:1207631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.