IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4465-d1161279.html
   My bibliography  Save this article

The Use of Methanol Vapour for Effective Drying of Cellulose Insulation

Author

Listed:
  • Piotr Przybylek

    (Institute of Electric Power Engineering, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland)

  • Jaroslaw Gielniak

    (Institute of Electric Power Engineering, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland)

Abstract

The paper deals with a new method of drying cellulose insulation, which uses methanol vapour present in nitrogen as a drying medium. Compared to the insulation drying methods currently used in the industry, the method presented in the article has the following advantages: there is no cellulose depolymerization because there is no need to heat the insulation, there is no need to use large-size and energy-intensive dryers because the whole process takes place in the tank of the transformer. Important parameters of the drying process, such as methanol concentration in the nitrogen, flow rate, and process duration, were determined in four separate experiments. For the purposes of these experiments, a special system was constructed to control and measure the flow of drying medium. Controlling the flow rate of the carrier gas (nitrogen) made it possible to obtain different concentrations of methanol in nitrogen. Such values of concentration and flow rate were determined that allow drying of pressboard and paper in less than 144 h to a level lower than 1%.

Suggested Citation

  • Piotr Przybylek & Jaroslaw Gielniak, 2023. "The Use of Methanol Vapour for Effective Drying of Cellulose Insulation," Energies, MDPI, vol. 16(11), pages 1-11, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4465-:d:1161279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tobias Münster & Peter Werle & Kai Hämel & Jörg Preusel, 2021. "Thermally Accelerated Aging of Insulation Paper for Transformers with Different Insulating Liquids," Energies, MDPI, vol. 14(11), pages 1-28, May.
    2. Amidou Betie & Fethi Meghnefi & Issouf Fofana & Zie Yeo, 2018. "Modeling the Insulation Paper Drying Process from Thermogravimetric Analyses," Energies, MDPI, vol. 11(3), pages 1-15, February.
    3. Janvier Sylvestre N’cho & Issouf Fofana & Yazid Hadjadj & Abderrahmane Beroual, 2016. "Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(5), pages 1-29, May.
    4. Piotr Przybylek, 2018. "A New Concept of Applying Methanol to Dry Cellulose Insulation at the Stage of Manufacturing a Transformer," Energies, MDPI, vol. 11(7), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Przybylek, 2024. "Thermal Ageing of Dry Cellulose Paper Impregnated with Different Insulating Liquids—Comparative Studies of Materials Properties," Energies, MDPI, vol. 17(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Przybylek & Hubert Moranda & Hanna Moscicka-Grzesiak & Dominika Szczesniak, 2019. "Application of Synthetic Ester for Drying Distribution Transformer Insulation—The Influence of Cellulose Thickness on Drying Efficiency," Energies, MDPI, vol. 12(20), pages 1-16, October.
    2. Enze Zhang & Jiang Liu & Chaohai Zhang & Peijun Zheng & Yosuke Nakanishi & Thomas Wu, 2023. "State-of-Art Review on Chemical Indicators for Monitoring the Aging Status of Oil-Immersed Transformer Paper Insulation," Energies, MDPI, vol. 16(3), pages 1-31, January.
    3. Grzegorz Dombek & Zbigniew Nadolny & Piotr Przybylek & Radoslaw Lopatkiewicz & Agnieszka Marcinkowska & Lukasz Druzynski & Tomasz Boczar & Andrzej Tomczewski, 2020. "Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids," Energies, MDPI, vol. 13(17), pages 1-17, August.
    4. Piotr Przybylek, 2018. "A New Concept of Applying Methanol to Dry Cellulose Insulation at the Stage of Manufacturing a Transformer," Energies, MDPI, vol. 11(7), pages 1-13, June.
    5. Piotr Przybylek & Hubert Moranda & Hanna Moscicka-Grzesiak & Mateusz Cybulski, 2020. "Laboratory Model Studies on the Drying Efficiency of Transformer Cellulose Insulation Using Synthetic Ester," Energies, MDPI, vol. 13(13), pages 1-11, July.
    6. Hanbo Zheng & Jiefeng Liu & Yiyi Zhang & Yijie Ma & Yang Shen & Xiaochen Zhen & Zilai Chen, 2018. "Effectiveness Analysis and Temperature Effect Mechanism on Chemical and Electrical-Based Transformer Insulation Diagnostic Parameters Obtained from PDC Data," Energies, MDPI, vol. 11(1), pages 1-17, January.
    7. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    8. Teresa Nogueira & José Carvalho & José Magano, 2022. "Eco-Friendly Ester Fluid for Power Transformers versus Mineral Oil: Design Considerations," Energies, MDPI, vol. 15(15), pages 1-18, July.
    9. Arputhasamy Joseph Amalanathan & Ramanujam Sarathi & Maciej Zdanowski & Ravikrishnan Vinu & Zbigniew Nadolny, 2023. "Review on Gassing Tendency of Different Insulating Fluids towards Transformer Applications," Energies, MDPI, vol. 16(1), pages 1-15, January.
    10. Siti Rosilah Arsad & Pin Jern Ker & Md. Zaini Jamaludin & Pooi Ying Choong & Hui Jing Lee & Vimal Angela Thiviyanathan & Young Zaidey Yang Ghazali, 2023. "Water Content in Transformer Insulation System: A Review on the Detection and Quantification Methods," Energies, MDPI, vol. 16(4), pages 1-31, February.
    11. Andrew Adewunmi Adekunle & Samson Okikiola Oparanti & Issouf Fofana, 2023. "Performance Assessment of Cellulose Paper Impregnated in Nanofluid for Power Transformer Insulation Application: A Review," Energies, MDPI, vol. 16(4), pages 1-32, February.
    12. Mohammed El Amine Senoussaoui & Mostefa Brahami & Issouf Fofana, 2021. "Transformer Oil Quality Assessment Using Random Forest with Feature Engineering," Energies, MDPI, vol. 14(7), pages 1-15, March.
    13. Przemyslaw Goscinski & Zbigniew Nadolny & Andrzej Tomczewski & Ryszard Nawrowski & Tomasz Boczar, 2023. "The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    14. Jingxin Zou & Weigen Chen & Fu Wan & Zhou Fan & Lingling Du, 2016. "Raman Spectral Characteristics of Oil-Paper Insulation and Its Application to Ageing Stage Assessment of Oil-Immersed Transformers," Energies, MDPI, vol. 9(11), pages 1-14, November.
    15. Amidou Betie & Fethi Meghnefi & Issouf Fofana & Zie Yeo, 2018. "Modeling the Insulation Paper Drying Process from Thermogravimetric Analyses," Energies, MDPI, vol. 11(3), pages 1-15, February.
    16. Jing Zhang & Feipeng Wang & Jian Li & Hehuan Ran & Dali Huang, 2017. "Influence of Copper Particles on Breakdown Voltage and Frequency-Dependent Dielectric Property of Vegetable Insulating Oil," Energies, MDPI, vol. 10(7), pages 1-13, July.
    17. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    18. Abi Munajad & Cahyo Subroto & Suwarno, 2017. "Study on the Effects of Thermal Aging on Insulating Paper for High Voltage Transformer Composite with Natural Ester from Palm Oil Using Fourier Transform Infrared Spectroscopy (FTIR) and Energy Disper," Energies, MDPI, vol. 10(11), pages 1-15, November.
    19. Pawel Zukowski & Przemyslaw Rogalski & Konrad Kierczynski & Tomasz N. Koltunowicz, 2021. "Precise Measurements of the Temperature Influence on the Complex Permittivity of Power Transformers Moistened Paper-Oil Insulation," Energies, MDPI, vol. 14(18), pages 1-24, September.
    20. Qing Yang & Peiyu Su & Yong Chen, 2017. "Comparison of Impulse Wave and Sweep Frequency Response Analysis Methods for Diagnosis of Transformer Winding Faults," Energies, MDPI, vol. 10(4), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4465-:d:1161279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.