IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4054-d1145974.html
   My bibliography  Save this article

Real-Time Grid Monitoring and Protection: A Comprehensive Survey on the Advantages of Phasor Measurement Units

Author

Listed:
  • Chinmayee Biswal

    (Department of Electrical Engineering, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar 751030, India)

  • Binod Kumar Sahu

    (Department of Electrical Engineering, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar 751030, India)

  • Manohar Mishra

    (Department of Electrical and Electronics Engineering, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar 751030, India)

  • Pravat Kumar Rout

    (Department of Electrical and Electronics Engineering, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar 751030, India)

Abstract

The emerging smart-grid and microgrid concept implementation into the conventional power system brings complexity due to the incorporation of various renewable energy sources and non-linear inverter-based devices. The occurrence of frequent power outages may have a significant negative impact on a nation’s economic, societal, and fiscal standing. As a result, it is essential to employ sophisticated monitoring and measuring technology. Implementing phasor measurement units (PMUs) in modern power systems brings about substantial improvement and beneficial solutions, mainly to protection issues and challenges. PMU-assisted state estimation, phase angle monitoring, power oscillation monitoring, voltage stability monitoring, fault detection, and cyberattack identification are a few prominent applications. Although substantial research has been carried out on the aspects of PMU applications to power system protection, it can be evolved from its current infancy stage and become an open domain of research to achieve further improvements and novel approaches. The three principal objectives are emphasized in this review. The first objective is to present all the methods on the synchro-phasor-based PMU application to estimate the power system states and dynamic phenomena in frequent time intervals to observe centrally, which helps to make appropriate decisions for better protection. The second is to discuss and analyze the post-disturbance scenarios adopted through better protection schemes based on accurate and synchronized measurements through GPS synchronization. Thirdly, this review summarizes current research on PMU applications for power system protection, showcasing innovative breakthroughs, addressing existing challenges, and highlighting areas for future research to enhance system resilience against catastrophic events.

Suggested Citation

  • Chinmayee Biswal & Binod Kumar Sahu & Manohar Mishra & Pravat Kumar Rout, 2023. "Real-Time Grid Monitoring and Protection: A Comprehensive Survey on the Advantages of Phasor Measurement Units," Energies, MDPI, vol. 16(10), pages 1-34, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4054-:d:1145974
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shepard, Daniel P. & Humphreys, Todd E. & Fansler, Aaron A., 2012. "Evaluation of the vulnerability of phasor measurement units to GPS spoofing attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 5(3), pages 146-153.
    2. Som, Shreyasi & Dutta, Rajarshi & Gholami, Amir & Srivastava, Anurag K. & Chakrabarti, Saikat & Sahoo, Soumya Ranjan, 2022. "DPMU-based multiple event detection in a microgrid considering measurement anomalies," Applied Energy, Elsevier, vol. 308(C).
    3. Mojgan Hojabri & Ulrich Dersch & Antonios Papaemmanouil & Peter Bosshart, 2019. "A Comprehensive Survey on Phasor Measurement Unit Applications in Distribution Systems," Energies, MDPI, vol. 12(23), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murilo Eduardo Casteroba Bento, 2024. "Load Margin Assessment of Power Systems Using Physics-Informed Neural Network with Optimized Parameters," Energies, MDPI, vol. 17(7), pages 1-20, March.
    2. Hussain A. Alhaiz & Ahmed S. Alsafran & Ali H. Almarhoon, 2023. "Single-Phase Microgrid Power Quality Enhancement Strategies: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Granados-Lieberman, 2020. "Global Harmonic Parameters for Estimation of Power Quality Indices: An Approach for PMUs," Energies, MDPI, vol. 13(9), pages 1-17, May.
    2. Jing Zhang & Yiqi Li & Zhi Wu & Chunyan Rong & Tao Wang & Zhang Zhang & Suyang Zhou, 2021. "Deep-Reinforcement-Learning-Based Two-Timescale Voltage Control for Distribution Systems," Energies, MDPI, vol. 14(12), pages 1-15, June.
    3. Do-In Kim, 2021. "Complementary Feature Extractions for Event Identification in Power Systems Using Multi-Channel Convolutional Neural Network," Energies, MDPI, vol. 14(15), pages 1-15, July.
    4. Giani, Annarita & Bent, Russell & Pan, Feng, 2014. "Phasor measurement unit selection for unobservable electric power data integrity attack detection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(3), pages 155-164.
    5. Karthikeyan Subramanian & Ashok Kumar Loganathan, 2020. "Islanding Detection Using a Micro-Synchrophasor for Distribution Systems with Distributed Generation," Energies, MDPI, vol. 13(19), pages 1-31, October.
    6. Alessandro Mingotti & Federica Costa & Lorenzo Peretto & Roberto Tinarelli, 2021. "Closed-Form Expressions to Estimate the Mean and Variance of the Total Vector Error," Energies, MDPI, vol. 14(15), pages 1-15, July.
    7. Colak, Ilhami & Sagiroglu, Seref & Fulli, Gianluca & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2016. "A survey on the critical issues in smart grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 396-405.
    8. Khaoula Hassini & Ahmed Fakhfakh & Faouzi Derbel, 2023. "Optimal Placement of μ PMUs in Distribution Networks with Adaptive Topology Changes," Energies, MDPI, vol. 16(20), pages 1-27, October.
    9. Mussawir Ul Mehmood & Abasin Ulasyar & Abraiz Khattak & Kashif Imran & Haris Sheh Zad & Shibli Nisar, 2020. "Cloud Based IoT Solution for Fault Detection and Localization in Power Distribution Systems," Energies, MDPI, vol. 13(11), pages 1-19, May.
    10. Marco Todescato & Ruggero Carli & Luca Schenato & Grazia Barchi, 2020. "Smart Grid State Estimation with PMUs Time Synchronization Errors," Energies, MDPI, vol. 13(19), pages 1-20, October.
    11. Zunaib Ali & Komal Saleem & Robert Brown & Nicholas Christofides & Sandra Dudley, 2022. "Performance Analysis and Benchmarking of PLL-Driven Phasor Measurement Units for Renewable Energy Systems," Energies, MDPI, vol. 15(5), pages 1-22, March.
    12. Reda, Haftu Tasew & Anwar, Adnan & Mahmood, Abdun, 2022. "Comprehensive survey and taxonomies of false data injection attacks in smart grids: attack models, targets, and impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    13. Uzair, Muhammad & Li, Li & Eskandari, Mohsen & Hossain, Jahangir & Zhu, Jian Guo, 2023. "Challenges, advances and future trends in AC microgrid protection: With a focus on intelligent learning methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    14. Nikolaos-Antonios I. Livanos & Sami Hammal & Nikolaos Giamarelos & Vagelis Alifragkis & Constantinos S. Psomopoulos & Elias N. Zois, 2023. "OpenEdgePMU: An Open PMU Architecture with Edge Processing for Future Resilient Smart Grids," Energies, MDPI, vol. 16(6), pages 1-29, March.
    15. Muhammad Musadiq Ahmed & Muhammad Amjad & Muhammad Ali Qureshi & Kashif Imran & Zunaib Maqsood Haider & Muhammad Omer Khan, 2022. "A Critical Review of State-of-the-Art Optimal PMU Placement Techniques," Energies, MDPI, vol. 15(6), pages 1-25, March.
    16. Giovanni Artale & Giuseppe Caravello & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Salvatore Guaiana & Ninh Nguyen Quang & Marco Palmeri & Nicola Panzavecchia & Giovanni Tinè, 2020. "A Virtual Tool for Load Flow Analysis in a Micro-Grid," Energies, MDPI, vol. 13(12), pages 1-26, June.
    17. Phylicia Cicilio & David Glennon & Adam Mate & Arthur Barnes & Vishvas Chalishazar & Eduardo Cotilla-Sanchez & Bjorn Vaagensmith & Jake Gentle & Craig Rieger & Richard Wies & Mohammad Heidari Kapourch, 2021. "Resilience in an Evolving Electrical Grid," Energies, MDPI, vol. 14(3), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4054-:d:1145974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.