IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p3980-d1142612.html
   My bibliography  Save this article

Comparison of Secondary Flow Characteristics in Mixed-Flow Turbine between Nozzleless and Symmetric Nozzle Vane Angles under Steady-State Flow at Full Admission

Author

Listed:
  • Mohd Jazmi Asyraff Jama’a

    (Department of Mechanical Engineering, Faculty of Engineering, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia)

  • Balamurugan Annamalai Gurunathan

    (Department of Mechanical Engineering, Faculty of Engineering, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia)

  • Ricardo Martinez Botas

    (Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London SW7 2BX, UK)

  • Uswah Khairuddin

    (Department of Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, University of Technology Malaysia, Kuala Lumpur 54100, Malaysia)

Abstract

In industrial applications, radial or mixed-flow turbines are frequently used in energy recovery systems, small turbines for producing power, and turbochargers. The implementation of radial or mixed-flow turbines helps to maintain high efficiency at a large range of pressure ratios by reducing the overall turbine losses and secondary flow losses. Numerous findings on secondary flow development research adopting double-entry turbines can be obtained in the public domain, except asymmetric volute, which is less well-researched. The focus of the present work is to investigate the evolution of secondary flows and their losses in a mixed-flow turbine used in an asymmetric volute turbine, by employing an experimentally validated three-dimensional computational fluid dynamics (CFD). The flow topology is analyzed to explain the formation and evolution of flow separations at the pressure, suction, and hub surfaces. As the opening angle of the nozzle vane increases, the incidence angle falls into the positive range while the maximum pressure difference between the shroud and hub decreases by about 40%. The results also show that the development of secondary flow accounts for the majority of losses and induced the centrifugal pressure head influence. The presence of symmetric nozzle vanes in both large and small scrolls is also found to have a significant detrimental effect on the turbine efficiency, which is 4% lower than the nozzleless case. Furthermore, significant flow separation is observed in the symmetrical nozzle vane configuration as opposed to that of nozzleless. In addition, the centrifugal pressure head indicated by the maximum pressure difference between the hub and shroud influences the overall turbine efficiency, as the symmetrical nozzle vane arrangement is introduced with two different turbine rotational speeds of 30 K rpm and 48 K rpm.

Suggested Citation

  • Mohd Jazmi Asyraff Jama’a & Balamurugan Annamalai Gurunathan & Ricardo Martinez Botas & Uswah Khairuddin, 2023. "Comparison of Secondary Flow Characteristics in Mixed-Flow Turbine between Nozzleless and Symmetric Nozzle Vane Angles under Steady-State Flow at Full Admission," Energies, MDPI, vol. 16(10), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:3980-:d:1142612
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/3980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/3980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    2. Ketata, Ahmed & Driss, Zied & Abid, Mohamed Salah, 2020. "Impact of blade number on performance, loss and flow characteristics of one mixed flow turbine," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Yingxian & Yang, Mingyang & Pan, Lei & Deng, Kangyao & Wu, Xintao & Wang, Cuicui, 2021. "Gasdynamic behaviours of a radial turbine with pulsating incoming flow," Energy, Elsevier, vol. 218(C).
    2. Liu, Jinlong & Wang, Bosen & Meng, Zhongwei & Liu, Zhentao, 2023. "An examination of performance deterioration indicators of diesel engines on the plateau," Energy, Elsevier, vol. 262(PB).
    3. Cruz, José Ramón Serrano & López, J. Javier & Climent, Héctor & Gómez-Vilanova, Alejandro, 2023. "Method for turbocharging and supercharging 2-stroke engines, applied to an opposed-piston new concept for hybrid powertrains," Applied Energy, Elsevier, vol. 351(C).
    4. Galindo, José & Serrano, José Ramón & De la Morena, Joaquín & Gómez-Vilanova, Alejandro, 2022. "Physical-based variable geometry turbines predictive control to enhance new hybrid powertrains’ transient response," Energy, Elsevier, vol. 261(PB).
    5. Ketata, Ahmed & Driss, Zied, 2021. "Characterization of double-entry turbine coupled with gasoline engine under in- and out-phase admission," Energy, Elsevier, vol. 236(C).
    6. Ohiemi, Israel Enema & Sunsheng, Yang & Singh, Punit & Li, Yanjun & Osman, Fareed, 2023. "Evaluation of energy loss in a low-head axial flow turbine under different blade numbers using entropy production method," Energy, Elsevier, vol. 274(C).
    7. Fershalov, A. Yu & Fershalov, Yu. Ya & Fershalov, M. Yu, 2021. "Principles of designing gas microturbine stages," Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:3980-:d:1142612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.