IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225004499.html
   My bibliography  Save this article

Shock wave control of a variable geometry turbine nozzle based on global profile and local bulge coupling optimization

Author

Listed:
  • Li, Xiaojian
  • Yang, Shilong
  • Liu, Zhengxian
  • Zhao, Ming
  • Zhao, Yijia

Abstract

Variable geometry turbine can boost the performances of engine in a wide range of working conditions especially at low speeds. When the turbine expansion ratio is large and the nozzle opening is small, a shock wave is generated near the trailing edge of the nozzle blade. Weakening the shock wave at the trailing edge of nozzle blade is a key task. In this study, a new coupling optimization method of the nozzle blade to control trailing edge shock wave is proposed. Firstly, a parametric modeling method of the nozzle blade that includes both global profile and local bulge designs is constructed. Then the quantitative evaluation methods of shock wave intensity and aerodynamic loss are defined. Finally, the shock wave control of the turbine nozzle based on the global profile and local bulge coupling optimization is implemented. The results at the design condition show that the shock wave intensity of the nozzle is decreased by 71.7 %, the total pressure loss is reduced by 25.8 %, the turbine adiabatic efficiency is increased by 3.59 %, and the variation of mass flow rate does not exceed 4 %. The results analyses at off-design conditions show that the coupling optimization has good robustness and can be generalized.

Suggested Citation

  • Li, Xiaojian & Yang, Shilong & Liu, Zhengxian & Zhao, Ming & Zhao, Yijia, 2025. "Shock wave control of a variable geometry turbine nozzle based on global profile and local bulge coupling optimization," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004499
    DOI: 10.1016/j.energy.2025.134807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225004499
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rajoo, Srithar & Romagnoli, Alessandro & Martinez-Botas, Ricardo F., 2012. "Unsteady performance analysis of a twin-entry variable geometry turbocharger turbine," Energy, Elsevier, vol. 38(1), pages 176-189.
    2. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    3. Dariusz Kozak & Paweł Mazuro & Andrzej Teodorczyk, 2021. "Numerical Simulation of Two-Stage Variable Geometry Turbine," Energies, MDPI, vol. 14(17), pages 1-34, August.
    4. Galindo, José & Serrano, José Ramón & De la Morena, Joaquín & Gómez-Vilanova, Alejandro, 2022. "Physical-based variable geometry turbines predictive control to enhance new hybrid powertrains’ transient response," Energy, Elsevier, vol. 261(PB).
    5. R. Cavoretto & A. Rossi & M. S. Mukhametzhanov & Ya. D. Sergeyev, 2021. "On the search of the shape parameter in radial basis functions using univariate global optimization methods," Journal of Global Optimization, Springer, vol. 79(2), pages 305-327, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    2. Zheng, Sanpeng & Feng, Renzhong, 2023. "A variable projection method for the general radial basis function neural network," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    3. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Wu, Yonghui, 2018. "Characterization of two-stage turbine system under steady and pulsating flow conditions," Energy, Elsevier, vol. 148(C), pages 407-423.
    4. Cerdoun, Mahfoudh & Ghenaiet, Adel, 2025. "Unsteady matching of a twin-entry radial turbine with a diesel engine," Energy, Elsevier, vol. 323(C).
    5. Serrano, José Ramón & Olmeda, Pablo & Tiseira, Andrés & García-Cuevas, Luis Miguel & Lefebvre, Alain, 2013. "Theoretical and experimental study of mechanical losses in automotive turbochargers," Energy, Elsevier, vol. 55(C), pages 888-898.
    6. Wang, Hanwei & Luo, Kai & Huang, Chuang & Zou, Aihong & Li, Daijin & Qin, Kan, 2022. "Numerical investigation of partial admission losses in radial inflow turbines," Energy, Elsevier, vol. 239(PA).
    7. Chen, Guisheng & Sun, Min & Li, Junda & Wang, Jiguang & Shen, Yinggang & Liang, Daping & Xiao, Renxin, 2024. "Study on high-altitude ceiling strategy of compression ignition aviation piston engines based on BP-NSGA II algorithm optimization," Energy, Elsevier, vol. 294(C).
    8. Chen, Chuin-Shan & Noorizadegan, Amir & Young, D.L. & Chen, C.S., 2023. "On the selection of a better radial basis function and its shape parameter in interpolation problems," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    9. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Inhestern, Lukas Benjamin, 2019. "An innovative losses model for efficiency map fitting of vaneless and variable vaned radial turbines extrapolating towards extreme off-design conditions," Energy, Elsevier, vol. 180(C), pages 626-639.
    10. Chiong, M.S. & Rajoo, S. & Romagnoli, A. & Costall, A.W. & Martinez-Botas, R.F., 2016. "One-dimensional pulse-flow modeling of a twin-scroll turbine," Energy, Elsevier, vol. 115(P1), pages 1291-1304.
    11. Martín Alejandro Valencia-Ponce & Esteban Tlelo-Cuautle & Luis Gerardo de la Fraga, 2021. "Estimating the Highest Time-Step in Numerical Methods to Enhance the Optimization of Chaotic Oscillators," Mathematics, MDPI, vol. 9(16), pages 1-15, August.
    12. Galindo, José & Serrano, José Ramón & De la Morena, Joaquín & Gómez-Vilanova, Alejandro, 2022. "Physical-based variable geometry turbines predictive control to enhance new hybrid powertrains’ transient response," Energy, Elsevier, vol. 261(PB).
    13. Samaneh Mokhtari & Ali Mesforush & Reza Mokhtari & Rahman Akbari & Clemens Heitzinger, 2023. "Solving Stochastic Nonlinear Poisson-Boltzmann Equations Using a Collocation Method Based on RBFs," Mathematics, MDPI, vol. 11(9), pages 1-13, April.
    14. Ketata, Ahmed & Driss, Zied, 2021. "Characterization of double-entry turbine coupled with gasoline engine under in- and out-phase admission," Energy, Elsevier, vol. 236(C).
    15. Liu, Tao & Soleymani, Fazlollah & Ullah, Malik Zaka, 2024. "Solving multi-dimensional European option pricing problems by integrals of the inverse quadratic radial basis function on non-uniform meshes," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    16. Mohd Jazmi Asyraff Jama’a & Balamurugan Annamalai Gurunathan & Ricardo Martinez Botas & Uswah Khairuddin, 2023. "Comparison of Secondary Flow Characteristics in Mixed-Flow Turbine between Nozzleless and Symmetric Nozzle Vane Angles under Steady-State Flow at Full Admission," Energies, MDPI, vol. 16(10), pages 1-29, May.
    17. Xue, Yingxian & Yang, Mingyang & Martinez-Botas, Ricardo F. & Romagnoli, Alessandro & Deng, Kangyao, 2019. "Loss analysis of a mix-flow turbine with nozzled twin-entry volute at different admissions," Energy, Elsevier, vol. 166(C), pages 775-788.
    18. Song, Yue & Zhou, Yu & Li, Xueyu & Zhong, Zhiming & Yan, Huansong & Xu, Zheng & Ding, Shuiting, 2025. "Investigation on cycle modes and energy distribution strategies of a novel combined cycle aviation engine," Energy, Elsevier, vol. 319(C).
    19. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    20. Lu, Zhaokai & Yang, Mingyang & Pan, Lei & Ni, Qingming & Xu, Dong & Deng, Kangyao, 2024. "Influence of unsteady stage-interaction on loss generation in regulated two-stage radial turbines at pulsating conditions," Energy, Elsevier, vol. 304(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.