IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3282-d806216.html
   My bibliography  Save this article

Experimental Investigation on Solar–Thermal Conversion and Migration Characteristics of Nanofluids

Author

Listed:
  • Haoyang Sun

    (Laboratory of Fundamental Science on Ergonomics and Environmental Control, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China)

  • Guiping Lin

    (Laboratory of Fundamental Science on Ergonomics and Environmental Control, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China)

  • Haichuan Jin

    (Laboratory of Fundamental Science on Ergonomics and Environmental Control, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China)

  • Ying Zhou

    (Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China)

  • Kuiyuan Ma

    (Laboratory of Fundamental Science on Ergonomics and Environmental Control, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China)

Abstract

Solar–thermal conversion and migration characteristics of nanofluids have attracted intensive attention recently. Due to the strong absorption of solar energy, solar collectors with nanofluids have wide applications in many areas including desalination and power generation. Researchers have mainly focused on the macroscopic performance of nanofluids in solar collectors, but the nanoparticles’ migration characteristics with vapor during phase transformation have not been further investigated. Therefore, an experimental investigation on solar–thermal conversion characteristics of nanofluids and migration characteristics with vapor during phase transformation was conducted in this work, in order to verify the enhancement effect of nanoparticles on solar energy absorption and explore the nanoparticles’ migration behavior with vapor. It was found that part of Ag nanoparticles migrate out of the nanofluids with generated vapor by boiling nanofluids, and most of the nanoparticles remained in the nanofluids. In addition, more Ag nanoparticles migrated with vapor with the increased heating power. The concentration of migrated nanofluids was 20.58 ppm with a power of 16.2 W and 31.39 ppm with a power of 20 W. The investigation pointed out the potential danger of nanofluids in the process of utility and provided a reference for the standardized application of nanofluids.

Suggested Citation

  • Haoyang Sun & Guiping Lin & Haichuan Jin & Ying Zhou & Kuiyuan Ma, 2022. "Experimental Investigation on Solar–Thermal Conversion and Migration Characteristics of Nanofluids," Energies, MDPI, vol. 15(9), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3282-:d:806216
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin, Haichuan & Lin, Guiping & Zeiny, Aimen & Bai, Lizhan & Wen, Dongsheng, 2019. "Nanoparticle-based solar vapor generation: An experimental and numerical study," Energy, Elsevier, vol. 178(C), pages 447-459.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Jin & Guiping Lin & Haichuan Jin & Zunru Fu & Haoyang Sun, 2021. "Experimental Research on the Selective Absorption of Solar Energy by Hybrid Nanofluids," Energies, MDPI, vol. 14(23), pages 1-18, December.
    2. Zhang, Wei & Li, Zhenlin & Zhang, Canying & Lin, Yusheng & Zhu, Haitao & Meng, Zhaoguo & Wu, Daxiong, 2022. "Improvement of the efficiency of volumetric solar steam generation by enhanced solar harvesting and energy management," Renewable Energy, Elsevier, vol. 183(C), pages 820-829.
    3. Kuzmenkov, D.M. & Delov, M.I. & Zeynalyan, K. & Struchalin, P.G. & Alyaev, S. & He, Y. & Kutsenko, K.V. & Balakin, B.V., 2020. "Solar steam generation in fine dispersions of graphite particles," Renewable Energy, Elsevier, vol. 161(C), pages 265-277.
    4. Shubo Liu & Yi Yang & Kuiyuan Ma & Haichuan Jin & Xin Jin, 2022. "Experimental Study of Pulsating Heat Pipes Filled with Nanofluids under the Irradiation of Solar Simulator," Energies, MDPI, vol. 15(23), pages 1-15, December.
    5. Meng, Zhaoguo & Li, Zhenlin & Li, Yang & Zhang, Canying & Wang, Kongxiang & Yu, Wei & Wu, Daxiong & Zhu, Haitao & Li, Wei, 2022. "Novel nanofluid based efficient solar vaporization systems with applications in desalination and wastewater treatment," Energy, Elsevier, vol. 247(C).
    6. Xin Jin & Guiping Lin & Haichuan Jin, 2021. "Experimental Investigations on Steam Generation in Nanofluids under Concentrated Solar Radiation," Energies, MDPI, vol. 14(13), pages 1-18, July.
    7. Ghafurian, Mohammad Mustafa & Malmir, Mohammad Reza & Akbari, Zohreh & Vafaei, Mohammad & Niazmand, Hamid & Goharshadi, Elaheh K. & Ebrahimi, Atefe & Mahian, Omid, 2022. "Interfacial solar steam generation by sawdust coated with W doped VO2," Energy, Elsevier, vol. 244(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3282-:d:806216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.