IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1323-d747382.html
   My bibliography  Save this article

Implementation of the Improved Active Frequency Drift Anti-Islanding Method into the Three-Phase AC/DC Converter with the LCL Grid Filter

Author

Listed:
  • Krzysztof Dmitruk

    (Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland)

  • Andrzej Sikorski

    (Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland)

Abstract

The article presents a modified standard Active Frequency Drift (AFD) method used to detect unintentional island operation in converters generating electricity from renewable energy sources to the power grid. The primary aim of each of the island operation detection methods is the possibility of shortening the energising of a separate part of the power grid. The proposed method eliminates fragments of the reference current signal when it reaches a constant value for a particular time. This part of the signal is replaced with the hyperbolic sine function. It allows reducing the value of Total Harmonic Distortions (THD) while maintaining the same effectiveness of island operation detection. The article contains a detailed description of the newly proposed type of disturbance generation. The proposed solution is verified by conducting simulation and laboratory tests. The possibility of shortening the island operation detection time is proven by increasing the maximum distortion introduced into the current without exceeding the permissible THD limit for converters connected to the power grid.

Suggested Citation

  • Krzysztof Dmitruk & Andrzej Sikorski, 2022. "Implementation of the Improved Active Frequency Drift Anti-Islanding Method into the Three-Phase AC/DC Converter with the LCL Grid Filter," Energies, MDPI, vol. 15(4), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1323-:d:747382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammed Y. Worku & Mohamed A. Hassan & Luqman S. Maraaba & Mohammad A. Abido, 2021. "Islanding Detection Methods for Microgrids: A Comprehensive Review," Mathematics, MDPI, vol. 9(24), pages 1-23, December.
    2. Min-Sung Kim & Raza Haider & Gyu-Jung Cho & Chul-Hwan Kim & Chung-Yuen Won & Jong-Seo Chai, 2019. "Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems," Energies, MDPI, vol. 12(5), pages 1-21, March.
    3. Xinxin Zheng & Rui Zhang & Xi Chen & Nong Sun, 2018. "Improved Three-Phase AFD Islanding Detection Based on Digital Control and Non-Detection Zone Elimination," Energies, MDPI, vol. 11(9), pages 1-15, September.
    4. Fabio Bignucolo & Alberto Cerretti & Massimiliano Coppo & Andrea Savio & Roberto Turri, 2017. "Effects of Energy Storage Systems Grid Code Requirements on Interface Protection Performances in Low Voltage Networks," Energies, MDPI, vol. 10(3), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazaher Karimi & Mohammad Farshad & Qiteng Hong & Hannu Laaksonen & Kimmo Kauhaniemi, 2020. "An Islanding Detection Technique for Inverter-Based Distributed Generation in Microgrids," Energies, MDPI, vol. 14(1), pages 1-18, December.
    2. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    3. Marino Coppola & Pierluigi Guerriero & Adolfo Dannier & Santolo Daliento & Davide Lauria & Andrea Del Pizzo, 2020. "Control of a Fault-Tolerant Photovoltaic Energy Converter in Island Operation," Energies, MDPI, vol. 13(12), pages 1-18, June.
    4. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "Power Flow Control Strategy and Reliable DC-Link Voltage Restoration for DC Microgrid under Grid Fault Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    5. Fabio Bignucolo & Manuele Bertoluzzo, 2020. "Application of Solid-State Transformers in a Novel Architecture of Hybrid AC/DC House Power Systems," Energies, MDPI, vol. 13(13), pages 1-18, July.
    6. Karthikeyan Subramanian & Ashok Kumar Loganathan, 2020. "Islanding Detection Using a Micro-Synchrophasor for Distribution Systems with Distributed Generation," Energies, MDPI, vol. 13(19), pages 1-31, October.
    7. Mezzour Ghita & Benhadou Siham & Medromi Hicham & Mounaam Amine, 2022. "HT-TPP: A Hybrid Twin Architecture for Thermal Power Plant Collaborative Condition Monitoring," Energies, MDPI, vol. 15(15), pages 1-38, July.
    8. Khan, Mohammed Ali & Haque, Ahteshamul & Kurukuru, V.S. Bharath & Saad, Mekhilef, 2022. "Islanding detection techniques for grid-connected photovoltaic systems-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. Bruno Silva Torres & Luiz Eduardo Borges da Silva & Camila Paes Salomon & Carlos Henrique Valério de Moraes, 2022. "Integrating Smart Grid Devices into the Traditional Protection of Distribution Networks," Energies, MDPI, vol. 15(7), pages 1-28, March.
    10. Yasser A. Elshrief & Sameh Abd-Elhaleem & Sulayman Kujabi & Dalal H. Helmi & Belal A. Abozalam & Amin D. Asham, 2022. "Zero Non-Detection Zone for Islanding Detection Based on a Novel Hybrid Passive-Active Technique with Fuzzy Inference System," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    11. Muhammed Y. Worku & Mohamed A. Hassan & Luqman S. Maraaba & Mohammad A. Abido, 2021. "Islanding Detection Methods for Microgrids: A Comprehensive Review," Mathematics, MDPI, vol. 9(24), pages 1-23, December.
    12. Francesco Simmini & Marco Agostini & Massimiliano Coppo & Tommaso Caldognetto & Andrea Cervi & Fabio Lain & Ruggero Carli & Roberto Turri & Paolo Tenti, 2020. "Leveraging Demand Flexibility by Exploiting Prosumer Response to Price Signals in Microgrids," Energies, MDPI, vol. 13(12), pages 1-19, June.
    13. Yajing Gao & Fushen Xue & Wenhai Yang & Yanping Sun & Yongjian Sun & Haifeng Liang & Peng Li, 2017. "A Three-Part Electricity Price Mechanism for Photovoltaic-Battery Energy Storage Power Plants Considering the Power Quality and Ancillary Service," Energies, MDPI, vol. 10(9), pages 1-21, August.
    14. Rafaela Nascimento & Felipe Ramos & Aline Pinheiro & Washington de Araujo Silva Junior & Ayrlw M. C. Arcanjo & Roberto F. Dias Filho & Mohamed A. Mohamed & Manoel H. N. Marinho, 2022. "Case Study of Backup Application with Energy Storage in Microgrids," Energies, MDPI, vol. 15(24), pages 1-12, December.
    15. Mukul Chankaya & Ikhlaq Hussain & Aijaz Ahmad & Irfan Khan & S.M. Muyeen, 2021. "Nyström Minimum Kernel Risk-Sensitive Loss Based Seamless Control of Grid-Tied PV-Hybrid Energy Storage System," Energies, MDPI, vol. 14(5), pages 1-22, March.
    16. Xing Luo & Jihong Wang & Jacek D. Wojcik & Jianguo Wang & Decai Li & Mihai Draganescu & Yaowang Li & Shihong Miao, 2018. "Review of Voltage and Frequency Grid Code Specifications for Electrical Energy Storage Applications," Energies, MDPI, vol. 11(5), pages 1-26, April.
    17. Muhammad Hafeez Mohamed Hariri & Mohd Khairunaz Mat Desa & Syafrudin Masri & Muhammad Ammirrul Atiqi Mohd Zainuri, 2020. "Grid-Connected PV Generation System—Components and Challenges: A Review," Energies, MDPI, vol. 13(17), pages 1-28, August.
    18. Saeid Esmaeili & Amjad Anvari-Moghaddam & Shahram Jadid, 2019. "Optimal Operational Scheduling of Reconfigurable Multi-Microgrids Considering Energy Storage Systems," Energies, MDPI, vol. 12(9), pages 1-23, May.
    19. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    20. Thomas Price & Gordon Parker & Gail Vaucher & Robert Jane & Morris Berman, 2022. "Microgrid Energy Management during High-Stress Operation," Energies, MDPI, vol. 15(18), pages 1-11, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1323-:d:747382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.