IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1094-d740509.html
   My bibliography  Save this article

Detailed Analysis of the Effects of Biodiesel Fraction Increase on the Combustion Stability and Characteristics of a Reactivity-Controlled Compression Ignition Diesel-Biodiesel/Natural Gas Engine

Author

Listed:
  • Mohammad Taghi Zarrinkolah

    (School of Mechanical Engineering, Sharif University of Technology, Azadi Ave, Tehran 1458889694, Iran)

  • Vahid Hosseini

    (School of Sustainable Energy Engineering, Faculty of Applied Sciences, Simon Fraser University, 10285 University Drive, Surrey, BC V3T 0N1, Canada)

Abstract

A single-cylinder marine diesel engine was modified to be operated in reactivity controlled compression ignition (RCCI) combustion mode. The engine fueling system was upgraded to a common rail fuel injection system. Natural gas (NG) was used as port fuel injection, and a diesel/sunflower methyl ester biodiesel mixture was used for direct fuel injection. The fraction of biodiesel in the direct fuel injection was changed from 0% (B0; 0% biodiesel and 100% diesel) to 5% (B5) and 20% (B20) while keeping the total energy input into the engine constant. The objective was to understand the impacts of the increased biodiesel fraction on the combustion characteristics and stability, emissions, and knocking/misfiring behavior, keeping all other influential parameters constant. The results showed that nitrogen oxides (NOx) emissions of B5 and B20 without the need for any after-treatment devices were lower than the NOx emission limit of the Euro VI stationary engine regulation. B5 and B20 NOx emissions decreased by more than 70% compared to the baseline. Significantly more unburned hydrocarbons (UHCs) and carbon monoxide (CO) emissions were produced when biodiesel was used in the direct fuel injection (DFI). The results also showed that using B5 and B20 instead of B0 led to an increase of 18% and 13.5% in UHCs and an increase of 88.5% and 97% in CO emissions, respectively. Increasing the biodiesel fraction to B5 and B20 reduced the maximum in-cylinder pressure by 3% and 10.2%, respectively, compared to B0. Combustion instability is characterized by the coefficient of variation (COV) of the indicated mean effective pressure (IMEP), which was measured as 4.2% for B5 and 4.8% for B20 compared to 1.8% for B0. Therefore, using B20 and B5 resulted in up to 34.9% combustion instabilities, and 18.5% compared to the baseline case. The tendency for knocking decreased from 13.7% for B0 to 4.3% for B20. The baseline case (B0) had no misfiring cycle. The B5 case had some misfiring cycles, but no knocking cycle was observed. Moreover, the historical cyclic analysis showed more data dispersions when the biodiesel fraction increased in DFI. This study shows the potential of biodiesel replacement in NG/diesel RCCI combustion engines. This study shows that biodiesel can be used to effectively reduce NOx emissions and the knocking intensity of RCCI combustion. However, combustion instability needs to be monitored.

Suggested Citation

  • Mohammad Taghi Zarrinkolah & Vahid Hosseini, 2022. "Detailed Analysis of the Effects of Biodiesel Fraction Increase on the Combustion Stability and Characteristics of a Reactivity-Controlled Compression Ignition Diesel-Biodiesel/Natural Gas Engine," Energies, MDPI, vol. 15(3), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1094-:d:740509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Navid Kousheshi & Mortaza Yari & Amin Paykani & Ali Saberi Mehr & German F. de la Fuente, 2020. "Effect of Syngas Composition on the Combustion and Emissions Characteristics of a Syngas/Diesel RCCI Engine," Energies, MDPI, vol. 13(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Harbi, Ahmed A. & Alabduly, Abdullah J. & Alkhedhair, Abdullah M. & Alqahtani, Naif B. & Albishi, Miqad S., 2022. "Effect of operation under lean conditions on NOx emissions and fuel consumption fueling an SI engine with hydrous ethanol–gasoline blends enhanced with synthesis gas," Energy, Elsevier, vol. 238(PA).
    2. Saaida Khlifi & Marzouk Lajili & Patrick Perré & Victor Pozzobon, 2022. "A Numerical Study of Turbulent Combustion of a Lignocellulosic Gas Mixture in an Updraft Fixed Bed Reactor," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    3. Paykani, Amin & Garcia, Antonio & Shahbakhti, Mahdi & Rahnama, Pourya & Reitz, Rolf D., 2021. "Reactivity controlled compression ignition engine: Pathways towards commercial viability," Applied Energy, Elsevier, vol. 282(PA).
    4. Dhan Lord B. Fortela & Matthew Crawford & Alyssa DeLattre & Spencer Kowalski & Mary Lissard & Ashton Fremin & Wayne Sharp & Emmanuel Revellame & Rafael Hernandez & Mark Zappi, 2020. "Using Self-Organizing Maps to Elucidate Patterns among Variables in Simulated Syngas Combustion," Clean Technol., MDPI, vol. 2(2), pages 1-14, April.
    5. Chehrmonavari, Hamed & Kakaee, Amirhasan & Hosseini, Seyed Ehsan & Desideri, Umberto & Tsatsaronis, George & Floerchinger, Gus & Braun, Robert & Paykani, Amin, 2023. "Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. P. A. Harari & N. R. Banapurmath & V. S. Yaliwal & T. M. Yunus Khan & Irfan Anjum Badruddin & Sarfaraz Kamangar & Teuku Meurah Indra Mahlia, 2021. "Effect of Injection Timing and Injection Duration of Manifold Injected Fuels in Reactivity Controlled Compression Ignition Engine Operated with Renewable Fuels," Energies, MDPI, vol. 14(15), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1094-:d:740509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.