IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1007-d737828.html
   My bibliography  Save this article

Evaluation of an Additional Generator on the Economic Effect Based on a Load Sharing Optimization of Medium-Speed/High-Speed Diesel Generators in a Microgrid

Author

Listed:
  • Shuhei Yamano

    (Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi 184-8588, Tokyo, Japan)

  • Atsushi Akisawa

    (Institute of Engineering, Tokyo University of Agriculture and Technology, Fuchu 184-8588, Tokyo, Japan)

Abstract

This study investigates the additional installation of a high-speed diesel generator to independent microgrids (MG) such as remote islands where relatively efficient medium-speed diesel generators (DGs) are mainly used. While small-sized and lightweight, high-speed DGs are not widely spread for continuous usage because their efficiency is lower than that of the medium-speed DGs. The objective of this study is to evaluate the performance of the new method of load sharing optimization to improve the economy by interconnecting a high-speed DG to an independent MG where the medium-speed DGs are operated. The study investigates the effect of operation cost reduction by installing the new load sharing method of operation following the load sharing pattern derived by the mixed-integer programming. As a result of this study, there was some effect to installing a high-speed DG operated by the conventional method. In addition, by adding the new method of load sharing with optimization, the economic effect became even higher.

Suggested Citation

  • Shuhei Yamano & Atsushi Akisawa, 2022. "Evaluation of an Additional Generator on the Economic Effect Based on a Load Sharing Optimization of Medium-Speed/High-Speed Diesel Generators in a Microgrid," Energies, MDPI, vol. 15(3), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1007-:d:737828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1007/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1007/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timo Kannengießer & Maximilian Hoffmann & Leander Kotzur & Peter Stenzel & Fabian Schuetz & Klaus Peters & Stefan Nykamp & Detlef Stolten & Martin Robinius, 2019. "Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System," Energies, MDPI, vol. 12(14), pages 1-27, July.
    2. Liangce He & Zhigang Lu & Lili Pan & Hao Zhao & Xueping Li & Jiangfeng Zhang, 2019. "Optimal Economic and Emission Dispatch of a Microgrid with a Combined Heat and Power System," Energies, MDPI, vol. 12(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    2. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    3. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    4. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    5. Oracio I. Barbosa-Ayala & Jhon A. Montañez-Barrera & Cesar E. Damian-Ascencio & Adriana Saldaña-Robles & J. Arturo Alfaro-Ayala & Jose Alfredo Padilla-Medina & Sergio Cano-Andrade, 2020. "Solution to the Economic Emission Dispatch Problem Using Numerical Polynomial Homotopy Continuation," Energies, MDPI, vol. 13(17), pages 1-15, August.
    6. Whei-Min Lin & Chung-Yuen Yang & Chia-Sheng Tu & Hsi-Shan Huang & Ming-Tang Tsai, 2019. "The Optimal Energy Dispatch of Cogeneration Systems in a Liberty Market," Energies, MDPI, vol. 12(15), pages 1-15, July.
    7. Lukas Kerpen & Achim Schmidt & Bernd Sankol, 2021. "Differentiating the Physical Optimum from the Exergetic Evaluation of a Methane Combustion Process," Energies, MDPI, vol. 14(12), pages 1-17, June.
    8. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    9. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    10. Ali Sulaiman Alsagri & Abdulrahman A. Alrobaian, 2022. "Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview," Energies, MDPI, vol. 15(16), pages 1-34, August.
    11. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    12. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    13. Yokoyama, Ryohei & Takeuchi, Kotaro & Shinano, Yuji & Wakui, Tetsuya, 2021. "Effect of model reduction by time aggregation in multiobjective optimal design of energy supply systems by a hierarchical MILP method," Energy, Elsevier, vol. 228(C).
    14. Yuxing Liu & Linjun Zeng & Jie Zeng & Zhenyi Yang & Na Li & Yuxin Li, 2023. "Scheduling Optimization of IEHS with Uncertainty of Wind Power and Operation Mode of CCP," Energies, MDPI, vol. 16(5), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1007-:d:737828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.