IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p423-d719510.html
   My bibliography  Save this article

A Study on the Impact of Distance-Based Value Loss on Transmission Network Power Flow Using Synthetic Networks

Author

Listed:
  • Juhani Rantaniemi

    (School of Energy Systems, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland)

  • Jaakko Jääskeläinen

    (Department of Mechanical Engineering, School of Engineering, Aalto University, Otakaari 4, 02150 Espoo, Finland)

  • Jukka Lassila

    (School of Energy Systems, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland)

  • Samuli Honkapuro

    (School of Energy Systems, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland)

Abstract

This paper presents a methodology for rapid generation of synthetic transmission networks and uses it to investigate how a transmission distance-based value loss affects the overall grid power flow. The networks are created with a graph theory-based method and compared to existing energy systems. The power production is located on these synthetic networks by solving a facility location optimization problem with variable distance-based value losses. Next, AC power flow is computed for a snapshot of each network using the Newton–Raphson method and the transmission grid power flow is analyzed. The presented method enables rapid analysis of several grid topologies and offers a way to compare the effects of production incentives and renewable energy policies in different network conditions.

Suggested Citation

  • Juhani Rantaniemi & Jaakko Jääskeläinen & Jukka Lassila & Samuli Honkapuro, 2022. "A Study on the Impact of Distance-Based Value Loss on Transmission Network Power Flow Using Synthetic Networks," Energies, MDPI, vol. 15(2), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:423-:d:719510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Shen & Yanjun Li & Ji Xiang, 2018. "A Graph-Based Power Flow Method for Balanced Distribution Systems," Energies, MDPI, vol. 11(3), pages 1-11, February.
    2. Martín-Martínez, F. & Sánchez-Miralles, A. & Rivier, M. & Calvillo, C.F., 2017. "Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case study," Energy, Elsevier, vol. 134(C), pages 850-863.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oscar Danilo Montoya & Walter Gil-González & Jesus C. Hernández, 2023. "Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation," Energies, MDPI, vol. 16(2), pages 1-17, January.
    2. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    3. Stennikov, Valery & Barakhtenko, Evgeny & Mayorov, Gleb & Sokolov, Dmitry & Zhou, Bin, 2022. "Coordinated management of centralized and distributed generation in an integrated energy system using a multi-agent approach," Applied Energy, Elsevier, vol. 309(C).
    4. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    5. Paolo Taddeo & Alba Colet & Rafael E. Carrillo & Lluc Casals Canals & Baptiste Schubnel & Yves Stauffer & Ivan Bellanco & Cristina Corchero Garcia & Jaume Salom, 2020. "Management and Activation of Energy Flexibility at Building and Market Level: A Residential Case Study," Energies, MDPI, vol. 13(5), pages 1-18, March.
    6. Oscar Danilo Montoya & Francisco David Moya & Arul Rajagopalan, 2022. "Annual Operating Costs Minimization in Electrical Distribution Networks via the Optimal Selection and Location of Fixed-Step Capacitor Banks Using a Hybrid Mathematical Formulation," Mathematics, MDPI, vol. 10(9), pages 1-14, May.
    7. O. D. Montoya & W. Gil-González & J. C. Hernández & D. A. Giral-Ramírez & A. Medina-Quesada, 2020. "A Mixed-Integer Nonlinear Programming Model for Optimal Reconfiguration of DC Distribution Feeders," Energies, MDPI, vol. 13(17), pages 1-22, August.
    8. Peter Cappers & Andrew Satchwell & Will Gorman & Javier Reneses, 2019. "Financial Impacts of Net-Metered Distributed PV on a Prototypical Western Utility’s Shareholders and Ratepayers," Energies, MDPI, vol. 12(24), pages 1-19, December.
    9. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Diego Armando Giral-Ramírez, 2022. "Optimal Placement and Sizing of PV Sources in Distribution Grids Using a Modified Gradient-Based Metaheuristic Optimizer," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    10. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno, 2021. "Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    11. Gerres, Timo & Chaves Ávila, José Pablo & Martín Martínez, Francisco & Abbad, Michel Rivier & Arín, Rafael Cossent & Sánchez Miralles, Álvaro, 2019. "Rethinking the electricity market design: Remuneration mechanisms to reach high RES shares. Results from a Spanish case study," Energy Policy, Elsevier, vol. 129(C), pages 1320-1330.
    12. Oscar Danilo Montoya & Jorge Alexander Alarcon-Villamil & Jesus C. Hernández, 2021. "Operating Cost Reduction in Distribution Networks Based on the Optimal Phase-Swapping including the Costs of the Working Groups and Energy Losses," Energies, MDPI, vol. 14(15), pages 1-22, July.
    13. Walter Gil-González & Oscar Danilo Montoya & Arul Rajagopalan & Luis Fernando Grisales-Noreña & Jesus C. Hernández, 2020. "Optimal Selection and Location of Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm," Energies, MDPI, vol. 13(18), pages 1-21, September.
    14. Brandon Cortés-Caicedo & Laura Sofía Avellaneda-Gómez & Oscar Danilo Montoya & Lazaro Alvarado-Barrios & Harold R. Chamorro, 2021. "Application of the Vortex Search Algorithm to the Phase-Balancing Problem in Distribution Systems," Energies, MDPI, vol. 14(5), pages 1-35, February.
    15. Zahid Javid & Ulas Karaagac & Ilhan Kocar & Ka Wing Chan, 2021. "Laplacian Matrix-Based Power Flow Formulation for LVDC Grids with Radial and Meshed Configurations," Energies, MDPI, vol. 14(7), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:423-:d:719510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.