IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7594-d942414.html
   My bibliography  Save this article

Waveform Quality Evaluation Method of Variable-Frequency Current Based on Curve Fitting

Author

Listed:
  • Shengquan Zhao

    (College of Intelligence Science and Technology, National University of Defense Technology, 410073 Changsha, China)

  • Yaozong Liu

    (College of Intelligence Science and Technology, National University of Defense Technology, 410073 Changsha, China)

Abstract

Since total harmonic distortion (THD) is mainly used as the evaluation index for the waveform quality of periodic signals, it cannot be applied to variable-frequency signals. However, there is scarce research on the evaluation methods and indicators of variable-frequency signals in the literature. In this paper, an evaluation method of the waveform distortion (WD) of variable-frequency signals based on curve fitting is proposed. First, the variable-frequency current expression of the coefficients to be optimized is obtained through theoretical derivation. Second, the coefficients are optimized by curve fitting in the time domain through the nonlinear least-squares method. Then, the waveform distortion of the variable-frequency current ( I WDVF ) is calculated. In order to validate the proposed evaluation method, the simulation model of a synchronous motor driven by a cascaded H-bridge five-level inverter is built. The simulation results show that, for the same constant-frequency current, the current THD ( I THD ) obtained by the FFT method is the same as the current WD ( I WD ) obtained by the curve fitting method, which verifies the equivalence of the two methods. The influence of different sampling frequencies on the I WD and I THD is compared. The higher the sampling frequency, the more sampling points, and the more accurate the results. For the linear variable-frequency current, the I WDVF obtained by the curve fitting method is close to the average value of the I THD obtained by FFT, which indicates that the time-domain curve fitting method is reasonable to solve the I WDVF . For nonlinear variable-frequency current waveforms, the curve fitting method can also reasonably calculate the I WDVF . The curve fitting method can solve the evaluation problem of the variable-frequency current, and provide an evaluation means for the optimal design of a modulation strategy aiming at the optimal waveform quality of the variable- frequency current.

Suggested Citation

  • Shengquan Zhao & Yaozong Liu, 2022. "Waveform Quality Evaluation Method of Variable-Frequency Current Based on Curve Fitting," Energies, MDPI, vol. 15(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7594-:d:942414
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7594/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7594/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Radek Martinek & Jaroslav Rzidky & Rene Jaros & Petr Bilik & Martina Ladrova, 2019. "Least Mean Squares and Recursive Least Squares Algorithms for Total Harmonic Distortion Reduction Using Shunt Active Power Filter Control," Energies, MDPI, vol. 12(8), pages 1-26, April.
    2. Angel Arranz-Gimon & Angel Zorita-Lamadrid & Daniel Morinigo-Sotelo & Oscar Duque-Perez, 2021. "A Review of Total Harmonic Distortion Factors for the Measurement of Harmonic and Interharmonic Pollution in Modern Power Systems," Energies, MDPI, vol. 14(20), pages 1-38, October.
    3. James Kelly & Endika Aldaiturriaga & Pablo Ruiz-Minguela, 2019. "Applying International Power Quality Standards for Current Harmonic Distortion to Wave Energy Converters and Verified Device Emulators," Energies, MDPI, vol. 12(19), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angel Arranz-Gimon & Angel Zorita-Lamadrid & Daniel Morinigo-Sotelo & Oscar Duque-Perez, 2021. "A Review of Total Harmonic Distortion Factors for the Measurement of Harmonic and Interharmonic Pollution in Modern Power Systems," Energies, MDPI, vol. 14(20), pages 1-38, October.
    2. Minh Ly Duc & Petr Bilik & Radek Martinek, 2023. "Harmonics Signal Feature Extraction Techniques: A Review," Mathematics, MDPI, vol. 11(8), pages 1-36, April.
    3. Pedro Gomes da Cruz Filho & Danielle Devequi Gomes Nunes & Hayna Malta Santos & Alex Álisson Bandeira Santos & Bruna Aparecida Souza Machado, 2023. "From Patents to Progress: Genetic Algorithms in Harmonic Distortion Monitoring Technology," Energies, MDPI, vol. 16(24), pages 1-21, December.
    4. Hui Li & Yue Qu & Junwei Lu & Shuang Li, 2019. "A Composite Strategy for Harmonic Compensation in Standalone Inverter Based on Linear Active Disturbance Rejection Control," Energies, MDPI, vol. 12(13), pages 1-18, July.
    5. Lakshmi Syamala & Deepa Sankar & Suhara Ekkarakkudy Makkar & Bos Mathew Jos & Mathew Kallarackal, 2022. "Hysteresis Based Quasi Fixed Frequency Current Control of Single Phase Full Bridge Grid Integrated Voltage Source Inverter," Energies, MDPI, vol. 15(21), pages 1-17, October.
    6. Sun Lim & Seok-Kyoon Kim & Yonghun Kim, 2021. "Active Damping Injection Output Voltage Control with Dynamic Current Cut-Off Frequency for DC/DC Buck Converters," Energies, MDPI, vol. 14(20), pages 1-17, October.
    7. Jaime A. Rohten & David N. Dewar & Pericle Zanchetta & Andrea Formentini & Javier A. Muñoz & Carlos R. Baier & José J. Silva, 2021. "Multivariable Deadbeat Control of Power Electronics Converters with Fast Dynamic Response and Fixed Switching Frequency," Energies, MDPI, vol. 14(2), pages 1-16, January.
    8. Alessandro Busacca & Antonino Oscar Di Tommaso & Rosario Miceli & Claudio Nevoloso & Giuseppe Schettino & Gioacchino Scaglione & Fabio Viola & Ilhami Colak, 2022. "Switching Frequency Effects on the Efficiency and Harmonic Distortion in a Three-Phase Five-Level CHBMI Prototype with Multicarrier PWM Schemes: Experimental Analysis," Energies, MDPI, vol. 15(2), pages 1-29, January.
    9. Xing Sun & Wanjun Lei & Yuqi Dai & Yilin Yin & Qian Liu, 2022. "Optimization Configuration of Grid-Connected Inverters to Suppress Harmonic Amplification in a Microgrid," Energies, MDPI, vol. 15(14), pages 1-15, July.
    10. Liqaa Alhafadhi & Jiashen Teh & Ching-Ming Lai & Mohamed Salem, 2020. "Predictive Adaptive Filter for Reducing Total Harmonics Distortion in PV Systems," Energies, MDPI, vol. 13(12), pages 1-15, June.
    11. Naveed Ahmed Malik & Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja, 2023. "Firefly Optimization Heuristics for Sustainable Estimation in Power System Harmonics," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    12. Pavel Ilyushin & Aleksandr Kulikov & Konstantin Suslov & Sergey Filippov, 2022. "An Approach to Assessing Spatial Coherence of Current and Voltage Signals in Electrical Networks," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
    13. Hari Prasad Devarapalli & V. S. S. Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2020. "Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion," Energies, MDPI, vol. 13(18), pages 1-15, September.
    14. Mojtaba Hajihosseini & Vinko Lešić & Husam I. Shaheen & Paknoosh Karimaghaee, 2022. "Sliding Mode Controller for Parameter-Variable Load Sharing in Islanded AC Microgrid," Energies, MDPI, vol. 15(16), pages 1-17, August.
    15. Dawid Buła & Dariusz Grabowski & Marcin Maciążek, 2022. "A Review on Optimization of Active Power Filter Placement and Sizing Methods," Energies, MDPI, vol. 15(3), pages 1-35, February.
    16. Julio Barros, 2022. "New Power Quality Measurement Techniques and Indices in DC and AC Networks," Energies, MDPI, vol. 15(23), pages 1-3, December.
    17. Bayan H. Bany Fawaz & Issam A. Smadi & Saher A. Albatran & Ibrahem E. Atawi, 2024. "Advanced Single-Phase PLL-Based Transfer Delay Operators: A Comprehensive Review and Optimal Loop Filter Design," Energies, MDPI, vol. 17(2), pages 1-44, January.
    18. Minh Ly Duc & Lukas Hlavaty & Petr Bilik & Radek Martinek, 2023. "Harmonic Mitigation Using Meta-Heuristic Optimization for Shunt Adaptive Power Filters: A Review," Energies, MDPI, vol. 16(10), pages 1-55, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7594-:d:942414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.