IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6851-d919123.html
   My bibliography  Save this article

Propagation of Disturbances Generated by DC Electric Traction

Author

Listed:
  • Zbigniew Olczykowski

    (Faculty of Transport, Electrical Engineering and Computer Science, Kazimierz Pulaski University of Technology and Humanities, Malczewskiego 29, 26-600 Radom, Poland)

  • Jacek Kozyra

    (Faculty of Transport, Electrical Engineering and Computer Science, Kazimierz Pulaski University of Technology and Humanities, Malczewskiego 29, 26-600 Radom, Poland)

Abstract

In Poland, rail transport is powered by the electric system with the use of traction substations that supply the electric traction with DC voltage of 3 kV. The necessity to change the alternating voltage to the constant and changing loads of the substation cause the electric traction to be a recipient, generating a number of disturbances to the network. These disturbances affect the quality of electricity in the power system from which traction substations are supplied, and the power quality in auxiliary and non-traction lines. This article analyzes the measurements of power quality indicators recorded at selected points of the traction substation system. The parameters characterizing the power quality were recorded, among others, in the main lines supplying traction substations, non-traction lines and auxiliary circuits. The presented article is the first in a series of publications related to the assessment of the impact of DC electric traction on the power system. The recorded data will be the basis for computer simulations defining, inter alia, the impact of power supply conditions for traction substations on the power system and to propose methods of reducing disturbances generated by a dynamically changing substation load.

Suggested Citation

  • Zbigniew Olczykowski & Jacek Kozyra, 2022. "Propagation of Disturbances Generated by DC Electric Traction," Energies, MDPI, vol. 15(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6851-:d:919123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6851/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vítor A. Morais & João L. Afonso & Adriano S. Carvalho & António P. Martins, 2020. "New Reactive Power Compensation Strategies for Railway Infrastructure Capacity Increasing," Energies, MDPI, vol. 13(17), pages 1-25, August.
    2. Mohamed Tanta & José Gabriel Pinto & Vitor Monteiro & Antonio P. Martins & Adriano S. Carvalho & Joao L. Afonso, 2020. "Topologies and Operation Modes of Rail Power Conditioners in AC Traction Grids: Review and Comprehensive Comparison," Energies, MDPI, vol. 13(9), pages 1-30, May.
    3. Hamed Jafari Kaleybar & Morris Brenna & Federica Foiadelli & Seyed Saeed Fazel & Dario Zaninelli, 2020. "Power Quality Phenomena in Electric Railway Power Supply Systems: An Exhaustive Framework and Classification," Energies, MDPI, vol. 13(24), pages 1-35, December.
    4. Mihaela Popescu & Alexandru Bitoleanu, 2019. "A Review of the Energy Efficiency Improvement in DC Railway Systems," Energies, MDPI, vol. 12(6), pages 1-25, March.
    5. Patrobers Simiyu & I. E. Davidson, 2021. "MVDC Railway Traction Power Systems; State-of-the Art, Opportunities, and Challenges," Energies, MDPI, vol. 14(14), pages 1-27, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael S. Salles & Sarah K. Rönnberg, 2023. "Review of Waveform Distortion Interactions Assessment in Railway Power Systems," Energies, MDPI, vol. 16(14), pages 1-33, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Mariscotti & Leonardo Sandrolini, 2021. "Detection of Harmonic Overvoltage and Resonance in AC Railways Using Measured Pantograph Electrical Quantities," Energies, MDPI, vol. 14(18), pages 1-22, September.
    2. Joao L. Afonso & Luiz A. Lisboa Cardoso & Delfim Pedrosa & Tiago J. C. Sousa & Luis Machado & Mohamed Tanta & Vitor Monteiro, 2020. "A Review on Power Electronics Technologies for Electric Mobility," Energies, MDPI, vol. 13(23), pages 1-61, December.
    3. Mohamed Tanta & Jose Cunha & Luis A. M. Barros & Vitor Monteiro & José Gabriel Oliveira Pinto & Antonio P. Martins & Joao L. Afonso, 2021. "Experimental Validation of a Reduced-Scale Rail Power Conditioner Based on Modular Multilevel Converter for AC Railway Power Grids," Energies, MDPI, vol. 14(2), pages 1-27, January.
    4. Mihaela Popescu, 2022. "Energy Efficiency in Electric Transportation Systems," Energies, MDPI, vol. 15(21), pages 1-5, November.
    5. Szymon Haładyn, 2021. "The Problem of Train Scheduling in the Context of the Load on the Power Supply Infrastructure. A Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    6. Hamed Jafari Kaleybar & Morris Brenna & Federica Foiadelli & Seyed Saeed Fazel & Dario Zaninelli, 2020. "Power Quality Phenomena in Electric Railway Power Supply Systems: An Exhaustive Framework and Classification," Energies, MDPI, vol. 13(24), pages 1-35, December.
    7. Mihaela Popescu & Alexandru Bitoleanu & Mihaita Linca & Constantin Vlad Suru, 2021. "Improving Power Quality by a Four-Wire Shunt Active Power Filter: A Case Study," Energies, MDPI, vol. 14(7), pages 1-20, April.
    8. Andrej Brandis & Denis Pelin & Zvonimir Klaić & Damir Šljivac, 2022. "Identification of Even-Order Harmonics Injected by Semiconverter into the AC Grid," Energies, MDPI, vol. 15(5), pages 1-18, February.
    9. Regina Lamedica & Alessandro Ruvio & Laura Palagi & Nicola Mortelliti, 2020. "Optimal Siting and Sizing of Wayside Energy Storage Systems in a D.C. Railway Line," Energies, MDPI, vol. 13(23), pages 1-22, November.
    10. Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.
    11. Zakarya Oubrahim & Yassine Amirat & Mohamed Benbouzid & Mohammed Ouassaid, 2023. "Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-41, March.
    12. Zhongbei Tian & Ning Zhao & Stuart Hillmansen & Shuai Su & Chenglin Wen, 2020. "Traction Power Substation Load Analysis with Various Train Operating Styles and Substation Fault Modes," Energies, MDPI, vol. 13(11), pages 1-18, June.
    13. Aleksandr Skamyin & Yaroslav Shklyarskiy & Vasiliy Dobush & Iuliia Dobush, 2021. "Experimental Determination of Parameters of Nonlinear Electrical Load," Energies, MDPI, vol. 14(22), pages 1-14, November.
    14. Ying Wang & Yueyang Xin & Ziyun Xie & Xiuqing Mu & Xiaoqiang Chen, 2023. "Research on Low-Frequency Stability under Emergency Power Supply Scheme of Photovoltaic and Battery Access Railway Traction Power Supply System," Energies, MDPI, vol. 16(12), pages 1-32, June.
    15. Morris Brenna & Vittorio Bucci & Maria Carmen Falvo & Federica Foiadelli & Alessandro Ruvio & Giorgio Sulligoi & Andrea Vicenzutti, 2020. "A Review on Energy Efficiency in Three Transportation Sectors: Railways, Electrical Vehicles and Marine," Energies, MDPI, vol. 13(9), pages 1-19, May.
    16. Chi-Myeong Yun & Gyu-Jung Cho & Hyungchul Kim & Hosung Jung, 2022. "A Study on the Train Brake Position-Based Control Method for Regenerative Inverters," Energies, MDPI, vol. 15(18), pages 1-13, September.
    17. Bartosz Rozegnał & Paweł Albrechtowicz & Dominik Mamcarz & Monika Rerak & Maciej Skaza, 2021. "The Power Losses in Cable Lines Supplying Nonlinear Loads," Energies, MDPI, vol. 14(5), pages 1-15, March.
    18. Franciszek Restel & Szymon Mateusz Haładyn, 2022. "The Railway Timetable Evaluation Method in Terms of Operational Robustness against Overloads of the Power Supply System," Energies, MDPI, vol. 15(17), pages 1-17, September.
    19. Ivan Radaš & Ivan Župan & Viktor Šunde & Željko Ban, 2021. "Route Profile Dependent Tram Regenerative Braking Algorithm with Reduced Impact on the Supply Network," Energies, MDPI, vol. 14(9), pages 1-22, April.
    20. Raquel Martinez & Pablo Castro & Alberto Arroyo & Mario Manana & Noemi Galan & Fidel Simon Moreno & Sergio Bustamante & Alberto Laso, 2022. "Techniques to Locate the Origin of Power Quality Disturbances in a Power System: A Review," Sustainability, MDPI, vol. 14(12), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6851-:d:919123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.