IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5645-d631386.html
   My bibliography  Save this article

Detection of Harmonic Overvoltage and Resonance in AC Railways Using Measured Pantograph Electrical Quantities

Author

Listed:
  • Andrea Mariscotti

    (Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture (DITEN), University of Genova, 16145 Genova, Italy)

  • Leonardo Sandrolini

    (Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), Alma Mater Studiorum, University of Bologna, 40136 Bologna, Italy)

Abstract

Harmonic resonances are part of the power quality (PQ) problems of electrified railways and have serious consequences for the continuity of service and integrity of components in terms of overvoltage stress. The interaction between traction power stations (TPSs) and trains that causes line resonances is briefly reviewed, showing the dependence on infrastructure conditions. The objective is monitoring of resonance conditions at the onboard pantograph interface, which is new with respect to the approaches proposed in the literature and is equally applicable to TPS terminals. Voltage and current spectra, and derived impedance and power spectra, are analyzed, proposing a compact and efficient method based on short-time Fourier transform that is suitable for real-time implementation, possibly with the hardware available onboard for energy metering and harmonic interference monitoring. The methods are tested by sweeping long recordings taken at some European railways, covering cases of longer and shorter supply sections, with a range of resonance frequencies of about one decade. They give insight into the spectral behavior of resonances, their dependency on position and change over time, and the criteria needed to recognize genuine infrastructure resonances from rolling stock emissions.

Suggested Citation

  • Andrea Mariscotti & Leonardo Sandrolini, 2021. "Detection of Harmonic Overvoltage and Resonance in AC Railways Using Measured Pantograph Electrical Quantities," Energies, MDPI, vol. 14(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5645-:d:631386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vítor A. Morais & João L. Afonso & Adriano S. Carvalho & António P. Martins, 2020. "New Reactive Power Compensation Strategies for Railway Infrastructure Capacity Increasing," Energies, MDPI, vol. 13(17), pages 1-25, August.
    2. Qiujiang Liu & Binghan Sun & Qinyao Yang & Mingli Wu & Tingting He, 2020. "Harmonic Overvoltage Analysis of Electric Railways in a Wide Frequency Range Based on Relative Frequency Relationships of the Vehicle–Grid Coupling System," Energies, MDPI, vol. 13(24), pages 1-16, December.
    3. Chakrit Panpean & Kongpol Areerak & Phonsit Santiprapan & Kongpan Areerak & Seang Shen Yeoh, 2021. "Harmonic Mitigation in Electric Railway Systems Using Improved Model Predictive Control," Energies, MDPI, vol. 14(7), pages 1-16, April.
    4. Yuxing Liu & Jiazhu Xu & Zhikang Shuai & Yong Li & Yanjian Peng & Chonggan Liang & Guiping Cui & Sijia Hu & Mingmin Zhang & Bin Xie, 2020. "A Novel Harmonic Suppression Traction Transformer with Integrated Filtering Inductors for Railway Systems," Energies, MDPI, vol. 13(2), pages 1-18, January.
    5. Hamed Jafari Kaleybar & Morris Brenna & Federica Foiadelli & Seyed Saeed Fazel & Dario Zaninelli, 2020. "Power Quality Phenomena in Electric Railway Power Supply Systems: An Exhaustive Framework and Classification," Energies, MDPI, vol. 13(24), pages 1-35, December.
    6. Runze Zhang & Fei Lin & Zhongping Yang & Hu Cao & Yuping Liu, 2017. "A Harmonic Resonance Suppression Strategy for a High-Speed Railway Traction Power Supply System with a SHE-PWM Four-Quadrant Converter Based on Active-Set Secondary Optimization," Energies, MDPI, vol. 10(10), pages 1-23, October.
    7. Mohamed Tanta & Jose Cunha & Luis A. M. Barros & Vitor Monteiro & José Gabriel Oliveira Pinto & Antonio P. Martins & Joao L. Afonso, 2021. "Experimental Validation of a Reduced-Scale Rail Power Conditioner Based on Modular Multilevel Converter for AC Railway Power Grids," Energies, MDPI, vol. 14(2), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Mariscotti, 2021. "Power Quality Phenomena, Standards, and Proposed Metrics for DC Grids," Energies, MDPI, vol. 14(20), pages 1-41, October.
    2. Andrea Mariscotti, 2023. "The Electrical Behaviour of Railway Pantograph Arcs," Energies, MDPI, vol. 16(3), pages 1-43, February.
    3. Qiujiang Liu & Wanqi Zhang & Guotao Cao & Jingwei Liu & Jingjing Ye & Mingli Wu & Shaobing Yang, 2022. "Influence of the Catenary Distributed Parameters on the Resonance Frequencies of Electric Railways Based on Quantitative Calculation and Field Tests," Energies, MDPI, vol. 15(10), pages 1-17, May.
    4. Guiming Mei & Yang Song, 2022. "Effect of Overhead Contact Line Pre-Sag on the Interaction Performance with a Pantograph in Electrified Railways," Energies, MDPI, vol. 15(19), pages 1-13, September.
    5. Andrea Mariscotti, 2022. "Non-Intrusive Load Monitoring Applied to AC Railways," Energies, MDPI, vol. 15(11), pages 1-27, June.
    6. Rafael S. Salles & Sarah K. Rönnberg, 2023. "Review of Waveform Distortion Interactions Assessment in Railway Power Systems," Energies, MDPI, vol. 16(14), pages 1-33, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zbigniew Olczykowski & Jacek Kozyra, 2022. "Propagation of Disturbances Generated by DC Electric Traction," Energies, MDPI, vol. 15(18), pages 1-22, September.
    2. Luis A. M. Barros & António P. Martins & José Gabriel Pinto, 2023. "Balancing the Active Power of a Railway Traction Power Substation with an sp-RPC," Energies, MDPI, vol. 16(7), pages 1-22, March.
    3. Andrej Brandis & Denis Pelin & Zvonimir Klaić & Damir Šljivac, 2022. "Identification of Even-Order Harmonics Injected by Semiconverter into the AC Grid," Energies, MDPI, vol. 15(5), pages 1-18, February.
    4. Yuxing Liu & Jiazhu Xu & Zhikang Shuai & Yong Li & Yanjian Peng & Chonggan Liang & Guiping Cui & Sijia Hu & Mingmin Zhang & Bin Xie, 2020. "A Novel Harmonic Suppression Traction Transformer with Integrated Filtering Inductors for Railway Systems," Energies, MDPI, vol. 13(2), pages 1-18, January.
    5. Qingqing He & Lei Liu & Mingyang Qiu & Quanming Luo, 2021. "A Step-by-Step Design for Low-Pass Input Filter of the Single-Stage Converter," Energies, MDPI, vol. 14(23), pages 1-25, November.
    6. Minwu Chen & Yinyu Chen & Mingchi Wei, 2019. "Modeling and Control of a Novel Hybrid Power Quality Compensation System for 25-kV Electrified Railway," Energies, MDPI, vol. 12(17), pages 1-23, August.
    7. Joao L. Afonso & Luiz A. Lisboa Cardoso & Delfim Pedrosa & Tiago J. C. Sousa & Luis Machado & Mohamed Tanta & Vitor Monteiro, 2020. "A Review on Power Electronics Technologies for Electric Mobility," Energies, MDPI, vol. 13(23), pages 1-61, December.
    8. Zakarya Oubrahim & Yassine Amirat & Mohamed Benbouzid & Mohammed Ouassaid, 2023. "Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-41, March.
    9. Ying Wang & Yueyang Xin & Ziyun Xie & Xiuqing Mu & Xiaoqiang Chen, 2023. "Research on Low-Frequency Stability under Emergency Power Supply Scheme of Photovoltaic and Battery Access Railway Traction Power Supply System," Energies, MDPI, vol. 16(12), pages 1-32, June.
    10. Fujun Ma & Yulin Kuang & Zhengwen Wang & Gelin Huang & Dexing Kuang & Cheng Zhang, 2021. "Multi-Port and -Functional Power Conditioner and Its Control Strategy with Renewable Energy Access for a Railway Traction System," Energies, MDPI, vol. 14(19), pages 1-20, September.
    11. Raquel Martinez & Pablo Castro & Alberto Arroyo & Mario Manana & Noemi Galan & Fidel Simon Moreno & Sergio Bustamante & Alberto Laso, 2022. "Techniques to Locate the Origin of Power Quality Disturbances in a Power System: A Review," Sustainability, MDPI, vol. 14(12), pages 1-27, June.
    12. Julio Barros, 2022. "New Power Quality Measurement Techniques and Indices in DC and AC Networks," Energies, MDPI, vol. 15(23), pages 1-3, December.
    13. Mohamed Tanta & Jose Cunha & Luis A. M. Barros & Vitor Monteiro & José Gabriel Oliveira Pinto & Antonio P. Martins & Joao L. Afonso, 2021. "Experimental Validation of a Reduced-Scale Rail Power Conditioner Based on Modular Multilevel Converter for AC Railway Power Grids," Energies, MDPI, vol. 14(2), pages 1-27, January.
    14. Xiaoqiong He & Haijun Ren & Jingying Lin & Pengcheng Han & Yi Wang & Xu Peng & Zeliang Shu, 2019. "Power Flow Analysis of the Advanced Co-Phase Traction Power Supply System," Energies, MDPI, vol. 12(4), pages 1-20, February.
    15. Mihaela Popescu, 2022. "Energy Efficiency in Electric Transportation Systems," Energies, MDPI, vol. 15(21), pages 1-5, November.
    16. Szymon Haładyn, 2021. "The Problem of Train Scheduling in the Context of the Load on the Power Supply Infrastructure. A Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    17. Michał Dołęgowski & Mirosław Szmajda, 2021. "A Novel Algorithm for Fast DC Electric Arc Detection," Energies, MDPI, vol. 14(2), pages 1-17, January.
    18. Andrea Mariscotti, 2022. "Non-Intrusive Load Monitoring Applied to AC Railways," Energies, MDPI, vol. 15(11), pages 1-27, June.
    19. Hamed Jafari Kaleybar & Morris Brenna & Federica Foiadelli & Seyed Saeed Fazel & Dario Zaninelli, 2020. "Power Quality Phenomena in Electric Railway Power Supply Systems: An Exhaustive Framework and Classification," Energies, MDPI, vol. 13(24), pages 1-35, December.
    20. Kyle John Williams & Kade Wiseman & Sara Deilami & Graham Town & Foad Taghizadeh, 2023. "A Review of Power Transfer Systems for Light Rail Vehicles: The Case for Capacitive Wireless Power Transfer," Energies, MDPI, vol. 16(15), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5645-:d:631386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.