IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6126-d895790.html
   My bibliography  Save this article

Comparison of Axial Flow and Swirling Flow on Particle Pickup in Horizontal Pneumatic Conveying

Author

Listed:
  • Yun Ji

    (School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
    Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004, China)

  • Yating Hao

    (School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China)

  • Ning Yi

    (School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China)

  • Tianyuan Guan

    (School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China)

  • Dianrong Gao

    (School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
    Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004, China)

  • Yingna Liang

    (School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China)

Abstract

Pneumatic conveying is widely used in coal mining. As the lowest conveying velocity of materials, the pickup velocity is the key to the study of gas–solid two-phase flow. In this study, the pickup velocity of pebble particles was experimentally investigated. When the particle size is 3–9 mm, the airflow velocity was found to suitably describe the results as a function of the pickup velocity and have a high correlation. When the swirl number is 0.2, the optimal swirl number was found for which the highest particle pickup ratio was observed. Based on four different methods, namely, visual observation, mass weighing, coefficient of difference analysis, and determination of the peak-average ratio of the pressure drop in the flow field to measure the pickup velocity of the spraying material, the results showed that the accuracy of the particle pickup velocity obtained through visual observation was the lowest, and when the mass–loss rate of the particle was selected as the measurement index of the pickup velocity, the accuracy was the highest. The results will help to realize the long-distance transportation of spraying materials in inclined roadway under the shaft.

Suggested Citation

  • Yun Ji & Yating Hao & Ning Yi & Tianyuan Guan & Dianrong Gao & Yingna Liang, 2022. "Comparison of Axial Flow and Swirling Flow on Particle Pickup in Horizontal Pneumatic Conveying," Energies, MDPI, vol. 15(17), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6126-:d:895790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang Cheng & Zhaolong Ge & Jiufu Chen & Hao Ding & Lishuang Zou & Ke Li, 2018. "A Sequential Approach for Integrated Coal and Gas Mining of Closely-Spaced Outburst Coal Seams: Results from a Case Study Including Mine Safety Improvements and Greenhouse Gas Reductions," Energies, MDPI, vol. 11(11), pages 1-16, November.
    2. Philippe Beaulac & Mohamad Issa & Adrian Ilinca & Jean Brousseau, 2022. "Parameters Affecting Dust Collector Efficiency for Pneumatic Conveying: A Review," Energies, MDPI, vol. 15(3), pages 1-23, January.
    3. Slobodan Dudić & Vule Reljić & Dragan Šešlija & Nikolina Dakić & Vladislav Blagojević, 2021. "Improving Energy Efficiency of Flexible Pneumatic Systems," Energies, MDPI, vol. 14(7), pages 1-17, March.
    4. Zetian Zhang & Ru Zhang & Zhiguo Cao & Mingzhong Gao & Yong Zhang & Jing Xie, 2020. "Mechanical Behavior and Permeability Evolution of Coal under Different Mining-Induced Stress Conditions and Gas Pressures," Energies, MDPI, vol. 13(11), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shizhe Li & Zhaofeng Wang, 2023. "Study on the Coupling Effect of Stress Field and Gas Field in Surrounding Rock of Stope and Gas Migration Law," Energies, MDPI, vol. 16(18), pages 1-20, September.
    2. Boris V. Malozyomov & Vladimir Ivanovich Golik & Vladimir Brigida & Vladislav V. Kukartsev & Yadviga A. Tynchenko & Andrey A. Boyko & Sergey V. Tynchenko, 2023. "Substantiation of Drilling Parameters for Undermined Drainage Boreholes for Increasing Methane Production from Unconventional Coal-Gas Collectors," Energies, MDPI, vol. 16(11), pages 1-16, May.
    3. Wanqing Wang & Shuran Lyu & Yudong Zhang & Shuqi Ma, 2019. "A Risk Assessment Model of Coalbed Methane Development Based on the Matter-Element Extension Method," Energies, MDPI, vol. 12(20), pages 1-30, October.
    4. Hongwang Du & Wei Liu & Xin Bian & Wei Xiong, 2022. "Energy-Saving for Industrial Pneumatic Actuation Systems by Exhausted Air Reuse Based on a Constant Pressure Elastic Accumulator," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    5. Tadeusz Dziubak, 2022. "Experimental Investigation of Possibilities to Improve Filtration Efficiency of Tangential Inlet Return Cyclones by Modification of Their Design," Energies, MDPI, vol. 15(11), pages 1-37, May.
    6. Lluís Sanmiquel-Pera & Marc Bascompta & Hernán Francisco Anticoi, 2019. "Analysis of a Historical Accident in a Spanish Coal Mine," IJERPH, MDPI, vol. 16(19), pages 1-11, September.
    7. Tengteng Li & Bing Wu & Baiwei Lei, 2019. "Study on the Optimization of a Gas Drainage Borehole Drainage Horizon Based on the Evolution Characteristics of Mining Fracture," Energies, MDPI, vol. 12(23), pages 1-15, November.
    8. Mohamed Haddouche & Adrian Ilinca, 2022. "Energy Efficiency and Industry 4.0 in Wood Industry: A Review and Comparison to Other Industries," Energies, MDPI, vol. 15(7), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6126-:d:895790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.