IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4499-d291036.html
   My bibliography  Save this article

Study on the Optimization of a Gas Drainage Borehole Drainage Horizon Based on the Evolution Characteristics of Mining Fracture

Author

Listed:
  • Tengteng Li

    (School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Bing Wu

    (School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Baiwei Lei

    (School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

Abstract

Gas disaster restricts the safety development of coal mine. The technology of high-level borehole gas drainage is an important means to reduce the gas concentration in goaf. In order to determine the best position of the end of gas drainage hole, in this paper, based on the geological conditions of Xinyuan coal mine 31009 working face, a series of numerical simulation is carried out; and through the field test, the dynamic change of gas concentration in different height of borehole is monitored. The results show that: When the working face advances to different distances, there are four characteristic distribution areas in the horizontal direction: the fracture area of the original rock stratum, fracture channel generation and development area, fracture channel mature area and fracture channel closure area. Although the drilling horizon is different, the change of gas concentration in drilling can be divided into four stages: gas stabilization stage, gas initial change stage, gas fluctuation stage and gas re-stabilization stage. The variation of borehole concentration can reflect the evolution characteristics of fracture area. The response time of gas change in different layers is also different. In the gas initial change stage and the gas re-stabilization stage, the low-level borehole first responds. The response of gas change in high-level drilling is a long process, so the effect of high-level drilling is better than that of low-level drilling. For 31009 working face, the best gas drainage layer is 32m, and the field gas drainage has achieved good practical results. This study can provide some guidance for the prevention and control of gas disaster in goaf.

Suggested Citation

  • Tengteng Li & Bing Wu & Baiwei Lei, 2019. "Study on the Optimization of a Gas Drainage Borehole Drainage Horizon Based on the Evolution Characteristics of Mining Fracture," Energies, MDPI, vol. 12(23), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4499-:d:291036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang Cheng & Zhaolong Ge & Jiufu Chen & Hao Ding & Lishuang Zou & Ke Li, 2018. "A Sequential Approach for Integrated Coal and Gas Mining of Closely-Spaced Outburst Coal Seams: Results from a Case Study Including Mine Safety Improvements and Greenhouse Gas Reductions," Energies, MDPI, vol. 11(11), pages 1-16, November.
    2. Zhicheng Xie & Dongming Zhang & Zhenlong Song & Minghui Li & Chao Liu & Dongling Sun, 2017. "Optimization of Drilling Layouts Based on Controlled Presplitting Blasting through Strata for Gas Drainage in Coal Roadway Strips," Energies, MDPI, vol. 10(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shizhe Li & Zhaofeng Wang, 2023. "Study on the Coupling Effect of Stress Field and Gas Field in Surrounding Rock of Stope and Gas Migration Law," Energies, MDPI, vol. 16(18), pages 1-20, September.
    2. Haojun Wu & Min Gong & Xiaodong Wu & Yang Guo, 2022. "Effect and Response of Coal and Rock Media Conditions on Deep-Hole Pre-Splitting Blasting Techniques for Gas Drainage," Energies, MDPI, vol. 15(22), pages 1-17, November.
    3. Wanqing Wang & Shuran Lyu & Yudong Zhang & Shuqi Ma, 2019. "A Risk Assessment Model of Coalbed Methane Development Based on the Matter-Element Extension Method," Energies, MDPI, vol. 12(20), pages 1-30, October.
    4. Yuexia Chen & Jiang Xu & Shoujian Peng & Fazhi Yan & Chaojun Fan, 2018. "A Gas–Solid–Liquid Coupling Model of Coal Seams and the Optimization of Gas Drainage Boreholes," Energies, MDPI, vol. 11(3), pages 1-21, March.
    5. Yun Ji & Yating Hao & Ning Yi & Tianyuan Guan & Dianrong Gao & Yingna Liang, 2022. "Comparison of Axial Flow and Swirling Flow on Particle Pickup in Horizontal Pneumatic Conveying," Energies, MDPI, vol. 15(17), pages 1-18, August.
    6. Lluís Sanmiquel-Pera & Marc Bascompta & Hernán Francisco Anticoi, 2019. "Analysis of a Historical Accident in a Spanish Coal Mine," IJERPH, MDPI, vol. 16(19), pages 1-11, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4499-:d:291036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.