IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p6056-d893856.html
   My bibliography  Save this article

Lithium Battery State-of-Charge Estimation Based on AdaBoost.Rt-RNN

Author

Listed:
  • Ran Li

    (Automotive Electronic Drive Control and System Integration Engineering Research Center, Ministry of Education, Harbin 150080, China
    School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China)

  • Hui Sun

    (Automotive Electronic Drive Control and System Integration Engineering Research Center, Ministry of Education, Harbin 150080, China
    School of Automation, Harbin University of Science and Technology, Harbin 150080, China)

  • Xue Wei

    (Automotive Electronic Drive Control and System Integration Engineering Research Center, Ministry of Education, Harbin 150080, China
    School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China)

  • Weiwen Ta

    (School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China)

  • Haiying Wang

    (School of Automation, Harbin University of Science and Technology, Harbin 150080, China)

Abstract

Real-time and accurate state-of-charge estimation performs an important role in the smooth operation of various electric vehicle battery management systems. Neural network theory represents one of the most effective and commonly used methods of SOC prediction. However, traditional neural network methods are disadvantaged by such issues as the limited range of application, limited generalization ability, and low accuracy, which makes it difficult to meet the increasing safety requirements on electric vehicles. In view of these problems, an ensemble learning algorithm based on the AdaBoost.Rt is proposed in this paper. AdaBoost.Rt recurrent neural network model is purposed to ensure the accurate prediction of lithium battery SOC. Relying on a chain-connected recurrent neural network model, this method enables the correlation adaptability of sample data in the spatio-temporal dimension. The ensemble learning method was adopted to devise a method of multi-RNN model integration, with the RNN model as the base learner, thus constructing the AdaBoost.Rt-RNN strong learner model. According to the results of simulation and experimental comparisons, the integrated algorithm proposed in this paper is applicable to improve the accuracy of SOC prediction and the generalization performance of the model.

Suggested Citation

  • Ran Li & Hui Sun & Xue Wei & Weiwen Ta & Haiying Wang, 2022. "Lithium Battery State-of-Charge Estimation Based on AdaBoost.Rt-RNN," Energies, MDPI, vol. 15(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6056-:d:893856
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/6056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/6056/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yueh-Tsung Shieh & Chih-Chiang Wu & Ching-Yao Liu & Wei-Hua Chieng & Yu-Sheng Su & Shyr-Long Jeng & Edward-Yi Chang, 2022. "Lithium Battery Model and Its Application to Parallel Charging," Energies, MDPI, vol. 15(13), pages 1-21, June.
    2. Tang, Xiaopeng & Gao, Furong & Zou, Changfu & Yao, Ke & Hu, Wengui & Wik, Torsten, 2019. "Load-responsive model switching estimation for state of charge of lithium-ion batteries," Applied Energy, Elsevier, vol. 238(C), pages 423-434.
    3. Biao Yang & Yinshuang Wang & Yuedong Zhan, 2022. "Lithium Battery State-of-Charge Estimation Based on a Bayesian Optimization Bidirectional Long Short-Term Memory Neural Network," Energies, MDPI, vol. 15(13), pages 1-18, June.
    4. Peter Kurzweil & Wolfgang Scheuerpflug & Bernhard Frenzel & Christian Schell & Josef Schottenbauer, 2022. "Differential Capacity as a Tool for SOC and SOH Estimation of Lithium Ion Batteries Using Charge/Discharge Curves, Cyclic Voltammetry, Impedance Spectroscopy, and Heat Events: A Tutorial," Energies, MDPI, vol. 15(13), pages 1-21, June.
    5. Ragab El-Sehiemy & Mohamed A. Hamida & Ehab Elattar & Abdullah Shaheen & Ahmed Ginidi, 2022. "Nonlinear Dynamic Model for Parameter Estimation of Li-Ion Batteries Using Supply–Demand Algorithm," Energies, MDPI, vol. 15(13), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruslan Abdulkadirov & Pavel Lyakhov & Nikolay Nagornov, 2023. "Survey of Optimization Algorithms in Modern Neural Networks," Mathematics, MDPI, vol. 11(11), pages 1-37, May.
    2. Hongyuan Yuan & Jingan Liu & Yu Zhou & Hailong Pei, 2023. "State of Charge Estimation of Lithium Battery Based on Integrated Kalman Filter Framework and Machine Learning Algorithm," Energies, MDPI, vol. 16(5), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    2. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    3. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    4. Lai, Xin & Yao, Yi & Tang, Xiaopeng & Zheng, Yuejiu & Zhou, Yuanqiang & Sun, Yuedong & Gao, Furong, 2023. "Voltage profile reconstruction and state of health estimation for lithium-ion batteries under dynamic working conditions," Energy, Elsevier, vol. 282(C).
    5. Xiaoyu Li & Chuxin Wu & Chen Fu & Shanpu Zheng & Jindong Tian, 2022. "State Characterization of Lithium-Ion Battery Based on Ultrasonic Guided Wave Scanning," Energies, MDPI, vol. 15(16), pages 1-19, August.
    6. Slim Abid & Ali M. El-Rifaie & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Ghareeb Moustafa & Mohamed A. Tolba, 2023. "Development of Slime Mold Optimizer with Application for Tuning Cascaded PD-PI Controller to Enhance Frequency Stability in Power Systems," Mathematics, MDPI, vol. 11(8), pages 1-32, April.
    7. Hegazy Rezk & A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed, 2023. "A Comprehensive Review and Application of Metaheuristics in Solving the Optimal Parameter Identification Problems," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    8. Wei, Zhongbao & Hu, Jian & Li, Yang & He, Hongwen & Li, Weihan & Sauer, Dirk Uwe, 2022. "Hierarchical soft measurement of load current and state of charge for future smart lithium-ion batteries," Applied Energy, Elsevier, vol. 307(C).
    9. Lee, Won Yeol & Jin, En Mei & Cho, Jung Sang & Kang, Dong-Won & Jin, Bo & Jeong, Sang Mun, 2020. "Freestanding flexible multilayered Sulfur–Carbon nanotubes for Lithium–Sulfur battery cathodes," Energy, Elsevier, vol. 212(C).
    10. Araby Mahdy & Abdullah Shaheen & Ragab El-Sehiemy & Ahmed Ginidi & Saad F. Al-Gahtani, 2023. "Single- and Multi-Objective Optimization Frameworks of Shape Design of Tubular Linear Synchronous Motor," Energies, MDPI, vol. 16(5), pages 1-27, March.
    11. Asmaa I. Abdelfattah & Mostafa F. Shaaban & Ahmed H. Osman & Abdelfatah Ali, 2023. "Optimal Management of Seasonal Pumped Hydro Storage System for Peak Shaving," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    12. Ouyang, Tiancheng & Pan, Mingming & Huang, Youbin & Tan, Xianlin & Qin, Peijia, 2023. "Thermodynamic design and power prediction of a solar power tower integrated system using neural networks," Energy, Elsevier, vol. 278(PA).
    13. Yu, Hanqing & Zhang, Lisheng & Wang, Wentao & Li, Shen & Chen, Siyan & Yang, Shichun & Li, Junfu & Liu, Xinhua, 2023. "State of charge estimation method by using a simplified electrochemical model in deep learning framework for lithium-ion batteries," Energy, Elsevier, vol. 278(C).
    14. Xinghao Zhang & Yan Huang & Zhaowei Zhang & Huipin Lin & Yu Zeng & Mingyu Gao, 2022. "A Hybrid Method for State-of-Charge Estimation for Lithium-Ion Batteries Using a Long Short-Term Memory Network Combined with Attention and a Kalman Filter," Energies, MDPI, vol. 15(18), pages 1-26, September.
    15. Wang, Yujie & Chen, Zonghai, 2020. "A framework for state-of-charge and remaining discharge time prediction using unscented particle filter," Applied Energy, Elsevier, vol. 260(C).
    16. Ivan Radaš & Nicole Pilat & Daren Gnjatović & Viktor Šunde & Željko Ban, 2022. "Estimating the State of Charge of Lithium-Ion Batteries Based on the Transfer Function of the Voltage Response to the Current Pulse," Energies, MDPI, vol. 15(18), pages 1-14, September.
    17. Zhichen Xue & Nikhil Sharma & Feixiang Wu & Piero Pianetta & Feng Lin & Luxi Li & Kejie Zhao & Yijin Liu, 2023. "Asynchronous domain dynamics and equilibration in layered oxide battery cathode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. repec:abr:oajbrs:v:1:y:2020:i:2:p:43-47 is not listed on IDEAS
    19. Xin Zhang & Jiawei Hou & Zekun Wang & Yueqiu Jiang, 2022. "Joint SOH-SOC Estimation Model for Lithium-Ion Batteries Based on GWO-BP Neural Network," Energies, MDPI, vol. 16(1), pages 1-17, December.
    20. Ma, Wentao & Guo, Peng & Wang, Xiaofei & Zhang, Zhiyu & Peng, Siyuan & Chen, Badong, 2022. "Robust state of charge estimation for Li-ion batteries based on cubature kalman filter with generalized maximum correntropy criterion," Energy, Elsevier, vol. 260(C).
    21. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6056-:d:893856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.