IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5804-d884702.html
   My bibliography  Save this article

Identification of Transient Steam Temperature at the Inlet of the Pipeline Based on the Measured Steam Temperature at the Pipeline Outlet

Author

Listed:
  • Karol Kaczmarski

    (Department of Thermal Processes Air Protection and Waste Utilization, Cracow University of Technology, 31155 Cracow, Poland)

Abstract

A solution to the inverse heat transfer problem (IHP) occurring in steam pipelines is presented in the paper. The transient steam temperature at the pipeline inlet was determined from the steam temperature measured at the pipeline outlet. Temporary changes of steam temperature at the turbine inlet are set by the turbine manufacturer and result from the conditions of safe starting of the turbine and maintaining high durability of its components. The boiler start-up should be carried out so that the time-temperature changes at the boiler outlet equal the time-temperature changes determined using the inverse problem. In this paper, the inverse problem of heat transfer in the pipeline was solved by the finite volume method using data smoothing, future times steps, and Tikhonov regularization that stabilized the solution of the inverse problem. The determined transient steam temperature at the pipeline inlet was compared with the measured temperatures. The steam temperature at the inlet to the pipeline, which is the solution to the inverse problem, agrees very well with the measured temperature, as the absolute value of the relative difference ε T between measured and calculated temperature is between 0.045% and 0.3%, and the root mean square error RMSE is within the range of 0.038 K to 0.322 K.

Suggested Citation

  • Karol Kaczmarski, 2022. "Identification of Transient Steam Temperature at the Inlet of the Pipeline Based on the Measured Steam Temperature at the Pipeline Outlet," Energies, MDPI, vol. 15(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5804-:d:884702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5804/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5804/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taler, Dawid & Dzierwa, Piotr & Kaczmarski, Karol & Taler, Jan, 2022. "Increase the flexibility of steam boilers by optimisation of critical pressure component heating," Energy, Elsevier, vol. 250(C).
    2. Magdalena Jaremkiewicz & Dawid Taler & Piotr Dzierwa & Jan Taler, 2019. "Determination of Transient Fluid Temperature and Thermal Stresses in Pressure Thick-Walled Elements Using a New Design Thermometer," Energies, MDPI, vol. 12(2), pages 1-21, January.
    3. Rusin, Andrzej & Bieniek, Michał, 2017. "Maintenance planning of power plant elements based on avoided risk value," Energy, Elsevier, vol. 134(C), pages 672-680.
    4. Taler, Jan & Taler, Dawid & Kaczmarski, Karol & Dzierwa, Piotr & Trojan, Marcin & Sobota, Tomasz, 2018. "Monitoring of thermal stresses in pressure components based on the wall temperature measurement," Energy, Elsevier, vol. 160(C), pages 500-519.
    5. Wang, Hai & Wang, Haiying & Zhu, Tong & Deng, Wanli, 2017. "A novel model for steam transportation considering drainage loss in pipeline networks," Applied Energy, Elsevier, vol. 188(C), pages 178-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur S. Bartosik, 2023. "Numerical Heat Transfer and Fluid Flow: New Advances," Energies, MDPI, vol. 16(14), pages 1-7, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hinkelman, Kathryn & Anbarasu, Saranya & Wetter, Michael & Gautier, Antoine & Zuo, Wangda, 2022. "A fast and accurate modeling approach for water and steam thermodynamics with practical applications in district heating system simulation," Energy, Elsevier, vol. 254(PA).
    2. Yang, Weijia & Huang, Yuping & Zhao, Daiqing, 2023. "A coupled hydraulic–thermal dynamic model for the steam network in a heat–electricity integrated energy system," Energy, Elsevier, vol. 263(PC).
    3. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    4. Majdak, Marek & Grądziel, Sławomir, 2020. "Influence of thermal and flow conditions on the thermal stresses distribution in the evaporator tubes," Energy, Elsevier, vol. 209(C).
    5. Jan Taler & Paweł Ocłoń & Marcin Trojan & Abdulmajeed Mohamad, 2019. "Selected Papers from the XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018)," Energies, MDPI, vol. 12(12), pages 1-3, June.
    6. Martyna Tomala & Andrzej Rusin & Adam Wojaczek, 2020. "Risk-Based Planning of Diagnostic Testing of Turbines Operating with Increased Flexibility," Energies, MDPI, vol. 13(13), pages 1-16, July.
    7. Zhou, Suyang & Chen, Jinyi & Gu, Wei & Fang, Xin & Yuan, Xiaodong, 2023. "An adaptive space-step simulation approach for steam heating network considering condensate loss," Energy, Elsevier, vol. 263(PA).
    8. Shayesteh, E. & Yu, J. & Hilber, P., 2018. "Maintenance optimization of power systems with renewable energy sources integrated," Energy, Elsevier, vol. 149(C), pages 577-586.
    9. Wang, Hai & Wang, Haiying & Haijian, Zhou & Zhu, Tong, 2017. "Optimization modeling for smart operation of multi-source district heating with distributed variable-speed pumps," Energy, Elsevier, vol. 138(C), pages 1247-1262.
    10. Toubeau, Jean-François & Pardoen, Lorie & Hubert, Louis & Marenne, Nicolas & Sprooten, Jonathan & De Grève, Zacharie & Vallée, François, 2022. "Machine learning-assisted outage planning for maintenance activities in power systems with renewables," Energy, Elsevier, vol. 238(PC).
    11. Magda Joachimiak, 2021. "Analysis of Thermodynamic Parameter Variability in a Chamber of a Furnace for Thermo-Chemical Treatment," Energies, MDPI, vol. 14(10), pages 1-18, May.
    12. Judt, W. & Ciupek, B. & Urbaniak, R., 2020. "Numerical study of a heat transfer process in a low power heating boiler equipped with afterburning chamber," Energy, Elsevier, vol. 196(C).
    13. He, Guoxi & Li, Yansong & Huang, Yuanjie & Sun, Liying & Liao, Kexi, 2019. "A framework of smart pipeline system and its application on multiproduct pipeline leakage handling," Energy, Elsevier, vol. 188(C).
    14. Łukasz Bartela & Paweł Gładysz & Charalampos Andreades & Staffan Qvist & Janusz Zdeb, 2021. "Techno-Economic Assessment of Coal-Fired Power Unit Decarbonization Retrofit with KP-FHR Small Modular Reactors," Energies, MDPI, vol. 14(9), pages 1-25, April.
    15. Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Zhao, Guanjia & Ma, Suxia, 2023. "Data-driven modeling-based digital twin of supercritical coal-fired boiler for metal temperature anomaly detection," Energy, Elsevier, vol. 278(PA).
    16. Laubscher, Ryno, 2019. "Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks," Energy, Elsevier, vol. 189(C).
    17. Wang, Hai & Meng, Hua, 2018. "Improved thermal transient modeling with new 3-order numerical solution for a district heating network with consideration of the pipe wall's thermal inertia," Energy, Elsevier, vol. 160(C), pages 171-183.
    18. Dongliang Li & Shaojun Xia & Jianghua Geng & Fankai Meng & Yutao Chen & Guoqing Zhu, 2022. "Discriminability Analysis of Characterization Parameters in Micro-Leakage of Turbocharged Boiler’s Evaporation Tube," Energies, MDPI, vol. 15(22), pages 1-20, November.
    19. Dawid Taler & Tomasz Sobota & Magdalena Jaremkiewicz & Jan Taler, 2020. "Influence of the Thermometer Inertia on the Quality of Temperature Control in a Hot Liquid Tank Heated with Electric Energy," Energies, MDPI, vol. 13(15), pages 1-18, August.
    20. Taler, Dawid & Sobota, Tomasz & Jaremkiewicz, Magdalena & Taler, Jan, 2022. "Control of the temperature in the hot liquid tank by using a digital PID controller considering the random errors of the thermometer indications," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5804-:d:884702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.