IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4493-d843328.html
   My bibliography  Save this article

Energy Assessment of the Thermal Bridging Effects on Different Structural Envelope Types Using Mixed-Equivalent-Wall Method

Author

Listed:
  • Hameed Al-Awadi

    (Mechanical Engineering Department, College of Technological Studies, PAAET, Kuwait City 70554, Kuwait)

  • Ali Alajmi

    (Mechanical Engineering Department, College of Technological Studies, PAAET, Kuwait City 70554, Kuwait)

  • Hosny Abou-Ziyan

    (Mechanical Engineering Department, College of Technological Studies, PAAET, Kuwait City 70554, Kuwait
    Mechanical Power Engineering Department, Faculty of Engineering, Helwan University, Cairo 11718, Egypt)

Abstract

In this paper, the effect of house envelopes including thermal bridges on the daily, monthly, and annual consumption of the air conditioning system of a detached house and an attached house, with a façade in the east, west, north, or south direction, is investigated; moreover, the capacity of the air conditioning system is calculated for detached and attached houses based on the maximum hourly peak load during severe weather conditions. The four tested house envelopes are exterior insulation and finish system (EIFS), autoclaved aerated concrete block (AAC-B), classical (cement blocks with insulation in between), and AAC column and beam (AAC-CB). The work is conducted using a method that combines the finite element method (COMSOL Multiphysics), building simulation (EnergyPlus), and the Engineering Equation Solver (EES) programs. The results indicated that the annual consumption of the air conditioning system using AAC-B, classical, and AAC-CB envelopes is larger than that of EIFS by about 3.74, 11.53, and 20.70% for the detached house, and 1.8, 2.9%, and 6.7% for the attached house, respectively. The annual consumption of the air conditioner of the detached house is larger than the average consumption of the attached house by about 25.3, 27.7, 35.8, and 41.7% for EIFS, AAC-B, classical, and AAC-CB house envelopes, respectively. Using the different façade directions of the attached house, the average effect of the house envelope type on the air conditioning system capacity is about 8.84%, with a standard deviation of 0.466%.

Suggested Citation

  • Hameed Al-Awadi & Ali Alajmi & Hosny Abou-Ziyan, 2022. "Energy Assessment of the Thermal Bridging Effects on Different Structural Envelope Types Using Mixed-Equivalent-Wall Method," Energies, MDPI, vol. 15(12), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4493-:d:843328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    2. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
    3. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    4. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    5. Binju P Raj & Chandan Swaroop Meena & Nehul Agarwal & Lohit Saini & Shabir Hussain Khahro & Umashankar Subramaniam & Aritra Ghosh, 2021. "A Review on Numerical Approach to Achieve Building Energy Efficiency for Energy, Economy and Environment (3E) Benefit," Energies, MDPI, vol. 14(15), pages 1-26, July.
    6. Biswas, M.A. Rafe & Robinson, Melvin D. & Fumo, Nelson, 2016. "Prediction of residential building energy consumption: A neural network approach," Energy, Elsevier, vol. 117(P1), pages 84-92.
    7. Fahad Haneef & Giovanni Pernigotto & Andrea Gasparella & Jérôme Henri Kämpf, 2021. "Application of Urban Scale Energy Modelling and Multi-Objective Optimization Techniques for Building Energy Renovation at District Scale," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
    8. Zhang, Heyu & Wu, Yongjia & Shi, Tianhao & Wang, Qinggang & Wang, Caixia & Chen, Qiong & Ming, Tingzhen, 2025. "Thermal rectifiers: Physical mechanisms and potential applications in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    9. Silvia Soutullo & Emanuela Giancola & María Nuria Sánchez & José Antonio Ferrer & David García & María José Súarez & Jesús Ignacio Prieto & Elena Antuña-Yudego & Juan Luís Carús & Miguel Ángel Fernánd, 2020. "Methodology for Quantifying the Energy Saving Potentials Combining Building Retrofitting, Solar Thermal Energy and Geothermal Resources," Energies, MDPI, vol. 13(22), pages 1-25, November.
    10. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Mehrdad Ehsani, 2021. "Net Zero Energy Buildings: Variations, Clarifications, and Requirements in Response to the Paris Agreement," Energies, MDPI, vol. 14(13), pages 1-21, June.
    11. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wang, Yingzi & Meng, Fangfang & Wu, Jing, 2016. "Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system," Applied Energy, Elsevier, vol. 177(C), pages 25-39.
    12. Wang, Cuiling & Wang, Baolong & Cui, Mengdi & Wei, Falin, 2023. "Optimal fresh-air utilization strategy for constant temperature and humidity air-conditioning system based on isocost line," Energy, Elsevier, vol. 263(PD).
    13. Kočí, Jan & Kočí, Václav & Maděra, Jiří & Černý, Robert, 2019. "Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 22-32.
    14. Xie, Xing & Chen, Xing-ni & Xu, Bin & Fei, Yue & Pei, Gang, 2022. "Study based on “Heat Flux - Energy Saving Pointer”: Exploring why phase change materials is not energy efficient enough on internal wall in cold region," Renewable Energy, Elsevier, vol. 196(C), pages 1308-1324.
    15. Heegang Kim & Myoungsouk Yeo, 2020. "Thermal Bridge Modeling and a Dynamic Analysis Method Using the Analogy of a Steady-State Thermal Bridge Analysis and System Identification Process for Building Energy Simulation: Methodology and Vali," Energies, MDPI, vol. 13(17), pages 1-22, August.
    16. Jozef Švajlenka & Mária Kozlovská, 2021. "Factors Influencing the Sustainability of Wood-Based Constructions’ Use from the Perspective of Users," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    17. Di Leo, Senatro & Caramuta, Pietro & Curci, Paola & Cosmi, Carmelina, 2020. "Regression analysis for energy demand projection: An application to TIMES-Basilicata and TIMES-Italy energy models," Energy, Elsevier, vol. 196(C).
    18. Xing Shi & Binghui Si & Jiangshan Zhao & Zhichao Tian & Chao Wang & Xing Jin & Xin Zhou, 2019. "Magnitude, Causes, and Solutions of the Performance Gap of Buildings: A Review," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    19. María Nuria Sánchez & Emanuela Giancola & Eduardo Blanco & Silvia Soutullo & María José Suárez, 2019. "Experimental Validation of a Numerical Model of a Ventilated Façade with Horizontal and Vertical Open Joints," Energies, MDPI, vol. 13(1), pages 1-16, December.
    20. Luis Godoy-Vaca & E. Catalina Vallejo-Coral & Javier Martínez-Gómez & Marco Orozco & Geovanna Villacreses, 2021. "Predicted Medium Vote Thermal Comfort Analysis Applying Energy Simulations with Phase Change Materials for Very Hot-Humid Climates in Social Housing in Ecuador," Sustainability, MDPI, vol. 13(3), pages 1-31, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4493-:d:843328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.