IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4491-d843405.html
   My bibliography  Save this article

The Sense and Non-Sense of PEDs—Feeding Back Practical Experiences of Positive Energy District Demonstrators into the European PED Framework Definition Development Process

Author

Listed:
  • Han Vandevyvere

    (Department of Architecture and Planning, NTNU—Norwegian University of Science and Technology, 7491 Trondheim, Norway
    VITO/EnergyVille, 3600 Genk, Belgium)

  • Dirk Ahlers

    (Department of Architecture and Planning, NTNU—Norwegian University of Science and Technology, 7491 Trondheim, Norway)

  • Annemie Wyckmans

    (Department of Architecture and Planning, NTNU—Norwegian University of Science and Technology, 7491 Trondheim, Norway)

Abstract

This article discusses early developments of the Positive Energy District (PED) concept, both in terms of its definition and of its implementation in real world demonstrators. Based on the specific challenges for creating an operational definition for the European +CityxChange project, the feasibility of creating a PED was practically explored by identifying 4 possible subtypes that respond to varying constraints regarding the energy balance of the PED. This article provides the context and describes these 4 ambitions levels: PED autonomous , PED dynamic , PED virtual , and Pre PED; and the 3 boundary modes: geographical, functional, and virtual. The work thus expands on the first general PED definitions as they were put forward in the SET-plan and by the European Commission, while allowing a better response to the specific boundary conditions of PEDs’ physical context. As such, it provides an operational, city-focused, bottom-up PED definition. The present study analyses how these efforts connect to current work being performed on the development of a European PED Framework Definition. In the latter, new elements such as context factors are introduced in order to account for the varying boundary conditions that PEDs must address, and in particular the difficulties of realising PEDs in existing and densely built-up urban areas. Hereby it can be argued that the approach with 4 subtypes is a bottom-up method of addressing the same challenges as a context factor based approach operating in a top-down manner, this time starting from the regional or national renewable energy potentials. Both approaches indeed strive towards an optimum setup of PEDs both within their geographical boundaries and in their interactions with the surrounding energy infrastructures and cities. These efforts are instrumental in helping to prevent that a PED is being regarded as a goal in se, functionally disconnected from its surroundings. There are strong arguments in favour of handling PEDs as building blocks for the broader realisation of carbon neutral cities and regions, thus contributing to the systemic change that is needed to futureproof the built environment as a whole. Without applying this integrating perspective, PEDs risk creating a sub-optimal lock-in within their sites and thus remain one-off experiments, lacking connection to the wider urban sustainability strategies that are needed to properly address today’s energy and climate emergencies. This holds even more when considering the quality-related requirements that come with sustainable urban design and governance. Therefore, this study further explores how PEDs can fully support such a deep urban sustainability transition, and what could consequently be the next steps towards successful and upscaled PED deployment.

Suggested Citation

  • Han Vandevyvere & Dirk Ahlers & Annemie Wyckmans, 2022. "The Sense and Non-Sense of PEDs—Feeding Back Practical Experiences of Positive Energy District Demonstrators into the European PED Framework Definition Development Process," Energies, MDPI, vol. 15(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4491-:d:843405
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4491/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4491/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han Vandevyvere & Sven Stremke, 2012. "Urban Planning for a Renewable Energy Future: Methodological Challenges and Opportunities from a Design Perspective," Sustainability, MDPI, vol. 4(6), pages 1-20, June.
    2. Han Vandevyvere, 2011. "How to cut across the catch-all? A philosophical-cultural framework for assessing sustainability," International Journal of Innovation and Sustainable Development, Inderscience Enterprises Ltd, vol. 5(4), pages 403-424.
    3. Mira Conci & Jens Schneider, 2017. "A District Approach to Building Renovation for the Integral Energy Redevelopment of Existing Residential Areas," Sustainability, MDPI, vol. 9(5), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martina Dell’Unto & Louise-Nour Sassenou & Lorenzo Olivieri & Francesca Olivieri, 2023. "Technical Feasibility for the Boosting of Positive Energy Districts (PEDs) in Existing Mediterranean Districts: A Methodology and Case Study in Alcorcón, Spain," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    2. Moa Mattsson & Thomas Olofsson & Liv Lundberg & Olga Korda & Gireesh Nair, 2023. "An Exploratory Study on Swedish Stakeholders’ Experiences with Positive Energy Districts," Energies, MDPI, vol. 16(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    2. Najib Rahman Sabory & Tomonobu Senjyu & Mir Sayed Shah Danish & Mikaeel Ahmadi & Hameedullah Zaheb & Mustafa Halim, 2021. "A Framework for Integration of Smart and Sustainable Energy Systems in Urban Planning Processes of Low-Income Developing Countries: Afghanistan Case," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    3. Han Vandevyvere & Sven Stremke, 2012. "Urban Planning for a Renewable Energy Future: Methodological Challenges and Opportunities from a Design Perspective," Sustainability, MDPI, vol. 4(6), pages 1-20, June.
    4. Dasaraden Mauree & Silvia Coccolo & Amarasinghage Tharindu Dasun Perera & Vahid Nik & Jean-Louis Scartezzini & Emanuele Naboni, 2018. "A New Framework to Evaluate Urban Design Using Urban Microclimatic Modeling in Future Climatic Conditions," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    5. Griet Juwet & Michael Ryckewaert, 2018. "Energy Transition in the Nebular City: Connecting Transition Thinking, Metabolism Studies, and Urban Design," Sustainability, MDPI, vol. 10(4), pages 1-20, March.
    6. Jantzen, Jan & Kristensen, Michael & Christensen, Toke Haunstrup, 2018. "Sociotechnical transition to smart energy: The case of Samso 1997–2030," Energy, Elsevier, vol. 162(C), pages 20-34.
    7. Scognamiglio, Alessandra, 2016. "‘Photovoltaic landscapes’: Design and assessment. A critical review for a new transdisciplinary design vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 629-661.
    8. Peter Tauš & Marcela Taušová & Peter Sivák & Mária Shejbalová Muchová & Eva Mihaliková, 2020. "Parameter Optimization Model Photovoltaic Battery System for Charging Electric Cars," Energies, MDPI, vol. 13(17), pages 1-17, September.
    9. Hettinga, Sanne & Nijkamp, Peter & Scholten, Henk, 2018. "A multi-stakeholder decision support system for local neighbourhood energy planning," Energy Policy, Elsevier, vol. 116(C), pages 277-288.
    10. Barragán-Escandón, Edgar A. & Zalamea-León, Esteban F. & Terrados-Cepeda, Julio & Vanegas-Peralta, P.F., 2020. "Energy self-supply estimation in intermediate cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    11. Bertug Ozarisoy & Hasim Altan, 2017. "Adoption of Energy Design Strategies for Retrofitting Mass Housing Estates in Northern Cyprus," Sustainability, MDPI, vol. 9(8), pages 1-23, August.
    12. Sujit Kumar Sikder & Francis Eanes & Henok Birhanu Asmelash & Shiba Kar & Theo Koetter, 2016. "The Contribution of Energy-Optimized Urban Planning to Efficient Resource Use–A Case Study on Residential Settlement Development in Dhaka City, Bangladesh," Sustainability, MDPI, vol. 8(2), pages 1-19, February.
    13. Maryori C. Díaz-Ramírez & Víctor J. Ferreira & Tatiana García-Armingol & Ana María López-Sabirón & Germán Ferreira, 2020. "Environmental Assessment of Electrochemical Energy Storage Device Manufacturing to Identify Drivers for Attaining Goals of Sustainable Materials 4.0," Sustainability, MDPI, vol. 12(1), pages 1-20, January.
    14. Ionica Oncioiu & Anca Gabriela Petrescu & Eugenia Grecu & Marius Petrescu, 2017. "Optimizing the Renewable Energy Potential: Myth or Future Trend in Romania," Energies, MDPI, vol. 10(6), pages 1-14, May.
    15. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    16. Chulin Pan & Yufeng Jiang & Mingliang Wang & Shuang Xu & Ming Xu & Yixin Dong, 2021. "How Can Agricultural Corporate Build Sustainable Competitive Advantage through Green Intellectual Capital? A New Environmental Management Approach to Green Agriculture," IJERPH, MDPI, vol. 18(15), pages 1-26, July.
    17. Francesco Causone & Rossano Scoccia & Martina Pelle & Paola Colombo & Mario Motta & Sibilla Ferroni, 2021. "Neighborhood Energy Modeling and Monitoring: A Case Study," Energies, MDPI, vol. 14(12), pages 1-19, June.
    18. Han Vandevyvere & Frank Nevens, 2015. "Lost in Transition or Geared for the S-Curve? An Analysis of Flemish Transition Trajectories with a Focus on Energy Use and Buildings," Sustainability, MDPI, vol. 7(3), pages 1-22, February.
    19. Olatz Nicolas & Patricia Molina-Costa, 2021. "Demand Aggregation as a Strategy for Untapping Buildings’ Energy Renovation Potential: Diagnosis and Prioritization Methodology and Case Study from the Basque Country," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    20. Jani Laine & Jukka Heinonen & Seppo Junnila, 2020. "Pathways to Carbon-Neutral Cities Prior to a National Policy," Sustainability, MDPI, vol. 12(6), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4491-:d:843405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.