IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3603-d815779.html
   My bibliography  Save this article

Dimensionless Impedance Method for General Design of Surge Tank in Simple Pipeline Systems

Author

Listed:
  • Sanghyun Kim

    (Department of Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjung-gu, Busan 46241, Korea)

  • Dooyong Choi

    (K-Water Institute, 125 Yuseong-daero, Daeheon 34045, Korea)

Abstract

The design of surge protection devices is a practical issue for the management of pressurized pipeline systems. Depending on the flow status, dimension, material, and fluid properties of a particular pipeline, the generation of hydraulic transients and their interactions with surge protection devices have been explored considering different conditions for various pipeline systems. The resonance between the pipeline elements and surge energy absorption function of the hydraulic structure should be adaptively considered for each pipeline system. To comprehensively address surge generation and surge alleviating process, this study introduced dimensionless equations of fluid motion and continuity, and their solutions were developed in the dimensionless frequency domain. The impact of the surge tank, pressure accumulator, and its connector were also developed in terms of dimensionless operators. The impact of distinct flow conditions and pipeline properties was successfully addressed by an integrated parameter, dimensionless resistance, which also provided a unified condition for water hammer similarity in reservoir pipeline surge tank pipeline valve (RPSPV) systems. The development of dimensionless hydraulic impedance expressions along a pipeline system and its conversion into a response function provides a normalized pressure response in the dimensionless time domain. Excellent agreement was found between transient simulations using the developed method and those obtained using existing methods. The integration of a dimensionless approach into a metaheuristic engine provides a general platform for surge tank (ST) design in the comprehensive bounds of flow and pipeline conditions.

Suggested Citation

  • Sanghyun Kim & Dooyong Choi, 2022. "Dimensionless Impedance Method for General Design of Surge Tank in Simple Pipeline Systems," Energies, MDPI, vol. 15(10), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3603-:d:815779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wencheng Guo & Yang Liu & Fangle Qu & Xinyu Xu, 2020. "A Review of Critical Stable Sectional Areas for the Surge Tanks of Hydropower Stations," Energies, MDPI, vol. 13(23), pages 1-25, December.
    2. Mohammad Bostan & Ali Akbar Akhtari & Hossein Bonakdari & Farshad Jalili, 2019. "Optimal Design for Shock Damper with Genetic Algorithm to Control Water Hammer Effects in Complex Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1665-1681, March.
    3. Mohsen Besharat & Reza Tarinejad & Mohammad Taghi Aalami & Helena M. Ramos, 2016. "Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2687-2702, June.
    4. Wuyi Wan & Boran Zhang & Xiaoyi Chen & Jijian Lian, 2019. "Water Hammer Control Analysis of an Intelligent Surge Tank with Spring Self-Adaptive Auxiliary Control System," Energies, MDPI, vol. 12(13), pages 1-19, July.
    5. Kendir, Tarik Efe & Ozdamar, Aydogan, 2013. "Numerical and experimental investigation of optimum surge tank forms in hydroelectric power plants," Renewable Energy, Elsevier, vol. 60(C), pages 323-331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuangqing Yan & Yang Zheng & Jinbao Chen & Yousong Shi, 2022. "Hydraulic Oscillation Analysis of the Hydropower Station with an Equivalent Circuit-Based Hydraulic Impedance Scheme," Sustainability, MDPI, vol. 14(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Huang & Jiming Ma & Xinlei Guo & Huokun Li & Jiazhen Li & Gang Wang, 2021. "Stability Criterion for Mass Oscillation in the Surge Tank of a Hydropower Station Considering Velocity Head and Throttle Loss," Energies, MDPI, vol. 14(17), pages 1-19, August.
    2. Ma, Weichao & Yan, Wenjie & Yang, Jiebin & He, Xianghui & Yang, Jiandong & Yang, Weijia, 2022. "Experimental and numerical investigation on head losses of a complex throttled surge tank for refined hydropower plant simulation," Renewable Energy, Elsevier, vol. 186(C), pages 264-279.
    3. Yong Wang & Nan Wei & Dejun Wan & Shouxi Wang & Zongming Yuan, 2019. "Numerical Simulation for Preheating New Submarine Hot Oil Pipelines," Energies, MDPI, vol. 12(18), pages 1-26, September.
    4. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    5. Manzano-Agugliaro, Francisco & Taher, Myriam & Zapata-Sierra, Antonio & Juaidi, Adel & Montoya, Francisco G., 2017. "An overview of research and energy evolution for small hydropower in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 476-489.
    6. Chang Xu & Dianwei Qian, 2015. "Governor Design for a Hydropower Plant with an Upstream Surge Tank by GA-Based Fuzzy Reduced-Order Sliding Mode," Energies, MDPI, vol. 8(12), pages 1-16, November.
    7. Liu, Yi & Zhang, Jian & Chen, Sheng & Yu, Xiaodong, 2023. "Stability analysis and estimation of domain of attraction for hydropower station with surge tank," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    8. Guo, Wencheng & Yang, Jiandong, 2018. "Dynamic performance analysis of hydro-turbine governing system considering combined effect of downstream surge tank and sloping ceiling tailrace tunnel," Renewable Energy, Elsevier, vol. 129(PA), pages 638-651.
    9. Tingyu Xu & Sheng Chen & Jian Zhang & Xiaodong Yu & Jiawen Lyu & Haibin Yan, 2023. "Comparison on Hydraulic Characteristics of Vertical and Horizontal Air-Cushion Surge Chambers in the Hydropower Station under Load Disturbances," Energies, MDPI, vol. 16(3), pages 1-15, February.
    10. Wang, Le & Guo, Wencheng, 2022. "Nonlinear hydraulic coupling characteristics and energy conversion mechanism of pipeline - surge tank system of hydropower station with super long headrace tunnel," Renewable Energy, Elsevier, vol. 199(C), pages 1345-1360.
    11. Duban A. Paternina-Verona & Oscar E. Coronado-Hernández & Hector G. Espinoza-Román & Mohsen Besharat & Vicente S. Fuertes-Miquel & Helena M. Ramos, 2022. "Three-Dimensional Analysis of Air-Admission Orifices in Pipelines during Hydraulic Drainage Events," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    12. Michał Kubrak & Agnieszka Malesińska & Apoloniusz Kodura & Kamil Urbanowicz & Michał Stosiak, 2021. "Hydraulic Transients in Viscoelastic Pipeline System with Sudden Cross-Section Changes," Energies, MDPI, vol. 14(14), pages 1-12, July.
    13. Rezghi, A. & Riasi, A., 2016. "Sensitivity analysis of transient flow of two parallel pump-turbines operating at runaway," Renewable Energy, Elsevier, vol. 86(C), pages 611-622.
    14. Mohammad Bostan & Amir Hossein Azimi & Ali Akbar Akhtari & Hossein Bonakdari, 2021. "An Implicit Approach for Numerical Simulation of Water Hammer Induced Pressure in a Straight Pipe," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5155-5167, December.
    15. Mohammad Mahmoudi-Rad & Mohammad Najafzadeh, 2023. "Effects of Surge Tank Geometry on the Water Hammer Phenomenon: Numerical Investigation," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    16. Michał Kubrak & Agnieszka Malesińska & Apoloniusz Kodura & Kamil Urbanowicz & Paweł Bury & Michał Stosiak, 2021. "Water Hammer Control Using Additional Branched HDPE Pipe," Energies, MDPI, vol. 14(23), pages 1-18, November.
    17. J. Yazdi & A. Hokmabadi & M. R. JaliliGhazizadeh, 2019. "Optimal Size and Placement of Water Hammer Protective Devices in Water Conveyance Pipelines," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 569-590, January.
    18. Chunlei Liu & Qun Zheng & Qi Wang & Aqiang Lin & Yuting Jiang & Mingcong Luo, 2019. "Sensitivity Analysis of Multistage Compressor Characteristics Under the Spray Atomization Effect Using a CFD Model," Energies, MDPI, vol. 12(2), pages 1-30, January.
    19. Huang, Wei & Yang, Kailin & Ma, Jiming & Xu, Yaowu & Guo, Xinlei & Wang, Jue, 2018. "A new setting criterion of tailrace surge chambers for pumped-storage power plants," Renewable Energy, Elsevier, vol. 116(PA), pages 194-201.
    20. Yi Liu & Xiaodong Yu & Xinlei Guo & Wenlong Zhao & Sheng Chen, 2023. "Operational Stability of Hydropower Plant with Upstream and Downstream Surge Chambers during Small Load Disturbance," Energies, MDPI, vol. 16(11), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3603-:d:815779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.