IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0314998.html
   My bibliography  Save this article

Research on the characteristics and protection of water hammer in long-distance dual-pipe water supply systems

Author

Listed:
  • Xiaolei Zhang
  • Xiaoyi Guo
  • Yading Chen
  • Chen Yang
  • Shuyu Liu
  • Lixia Guo

Abstract

Hydraulic transients in long-distance pressurized water pipelines significantly impact their normal operation. This study develops a one-dimensional mathematical model for pressurized water pipelines using the method of characteristics and incorporates water hammer equations for dual-pipeline systems. The model is validated with experimental data, and simulations are conducted under real engineering conditions, focusing on valve closure operations. The analysis examines the transient responses for varying valve closure times (T) and the effect of installing surge tanks. Results show that increasing valve closure time and installing surge tanks both mitigate water hammer impacts. Specifically, when valve closure time exceeds 300 seconds, surge tanks reduce maximum pressure below the pipeline’s tolerance (Pmax) and decrease the number of nodes experiencing damaging negative pressures. This model effectively simulates hydraulic transients in dual-pipeline systems and provides a foundation for developing protective measures for pipeline operations.

Suggested Citation

  • Xiaolei Zhang & Xiaoyi Guo & Yading Chen & Chen Yang & Shuyu Liu & Lixia Guo, 2024. "Research on the characteristics and protection of water hammer in long-distance dual-pipe water supply systems," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-20, December.
  • Handle: RePEc:plo:pone00:0314998
    DOI: 10.1371/journal.pone.0314998
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314998
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0314998&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0314998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Riasi, Alireza & Tazraei, Pedram, 2017. "Numerical analysis of the hydraulic transient response in the presence of surge tanks and relief valves," Renewable Energy, Elsevier, vol. 107(C), pages 138-146.
    2. J. Yazdi & A. Hokmabadi & M. R. JaliliGhazizadeh, 2019. "Optimal Size and Placement of Water Hammer Protective Devices in Water Conveyance Pipelines," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 569-590, January.
    3. Kendir, Tarik Efe & Ozdamar, Aydogan, 2013. "Numerical and experimental investigation of optimum surge tank forms in hydroelectric power plants," Renewable Energy, Elsevier, vol. 60(C), pages 323-331.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Huang & Jiming Ma & Xinlei Guo & Huokun Li & Jiazhen Li & Gang Wang, 2021. "Stability Criterion for Mass Oscillation in the Surge Tank of a Hydropower Station Considering Velocity Head and Throttle Loss," Energies, MDPI, vol. 14(17), pages 1-19, August.
    2. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    3. Ma, Weichao & Yan, Wenjie & Yang, Jiebin & He, Xianghui & Yang, Jiandong & Yang, Weijia, 2022. "Experimental and numerical investigation on head losses of a complex throttled surge tank for refined hydropower plant simulation," Renewable Energy, Elsevier, vol. 186(C), pages 264-279.
    4. Mohammad Bostan & Amir Hossein Azimi & Ali Akbar Akhtari & Hossein Bonakdari, 2021. "An Implicit Approach for Numerical Simulation of Water Hammer Induced Pressure in a Straight Pipe," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5155-5167, December.
    5. Xu, Beibei & Jun, Hong-Bae & Chen, Diyi & Li, Huanhuan & Zhang, Jingjing & Cavalcante Blanco, Claudio Jose & Shen, Haijun, 2019. "Stability analysis of a hydro-turbine governing system considering inner energy losses," Renewable Energy, Elsevier, vol. 134(C), pages 258-266.
    6. Zhang, Jian & Qiu, Weixin & Wang, Qinyi & Yao, Tianyu & Hu, Chao & Liu, Yi, 2024. "Extreme water level of surge chamber in hydropower plant under combined operating conditions," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    7. Mohammad Mahmoudi-Rad & Mohammad Najafzadeh, 2023. "Effects of Surge Tank Geometry on the Water Hammer Phenomenon: Numerical Investigation," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    8. Lan, Xinyao & Jin, Jiahui & Xu, Beibei & Chen, Diyi & Egusquiza, Mònica & Kim, Jin-Hyuk & Egusquiza, Eduard & Jafar, Nejadali & Xu, Lin & Kuang, Yuan, 2022. "Physical model test and parametric optimization of a hydroelectric generating system with a coaxial shaft surge tank," Renewable Energy, Elsevier, vol. 200(C), pages 880-899.
    9. Manzano-Agugliaro, Francisco & Taher, Myriam & Zapata-Sierra, Antonio & Juaidi, Adel & Montoya, Francisco G., 2017. "An overview of research and energy evolution for small hydropower in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 476-489.
    10. Gongcheng Liu & Xudi Qiu & Jiayi Ma & Diyi Chen & Xiao Liang, 2022. "Influence of Flexible Generation Mode on the Stability of Hydropower Generation System: Stability Assessment of Part-Load Operation," Energies, MDPI, vol. 15(11), pages 1-19, May.
    11. Li, Huanhuan & Xu, Beibei & Riasi, Alireza & Szulc, Przemyslaw & Chen, Diyi & M'zoughi, Fares & Skjelbred, Hans Ivar & Kong, Jiehong & Tazraei, Pedram, 2019. "Performance evaluation in enabling safety for a hydropower generation system," Renewable Energy, Elsevier, vol. 143(C), pages 1628-1642.
    12. Yixuan Guo & Xiao Liang & Ziyu Niu & Zezhou Cao & Liuwei Lei & Hualin Xiong & Diyi Chen, 2021. "Vibration Characteristics of a Hydroelectric Generating System with Different Hydraulic-Mechanical-Electric Parameters in a Sudden Load Increasing Process," Energies, MDPI, vol. 14(21), pages 1-21, November.
    13. Chang Xu & Dianwei Qian, 2015. "Governor Design for a Hydropower Plant with an Upstream Surge Tank by GA-Based Fuzzy Reduced-Order Sliding Mode," Energies, MDPI, vol. 8(12), pages 1-16, November.
    14. Lei, Liuwei & Li, Feng & Kheav, Kimleng & Jiang, Wei & Luo, Xingqi & Patelli, Edoardo & Xu, Beibei & Chen, Diyi, 2021. "A start-up optimization strategy of a hydroelectric generating system: From a symmetrical structure to asymmetric structure on diversion pipes," Renewable Energy, Elsevier, vol. 180(C), pages 1148-1165.
    15. J. Yazdi & A. Hokmabadi & M. R. JaliliGhazizadeh, 2019. "Optimal Size and Placement of Water Hammer Protective Devices in Water Conveyance Pipelines," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 569-590, January.
    16. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Ying Yang & Bin Wang & Yuqiang Tian & Peng Chen, 2020. "Fractional-Order Finite-Time, Fault-Tolerant Control of Nonlinear Hydraulic-Turbine-Governing Systems with an Actuator Fault," Energies, MDPI, vol. 13(15), pages 1-20, July.
    18. Huang, Wei & Yang, Kailin & Ma, Jiming & Xu, Yaowu & Guo, Xinlei & Wang, Jue, 2018. "A new setting criterion of tailrace surge chambers for pumped-storage power plants," Renewable Energy, Elsevier, vol. 116(PA), pages 194-201.
    19. Wuyi Wan & Boran Zhang & Xiaoyi Chen & Jijian Lian, 2019. "Water Hammer Control Analysis of an Intelligent Surge Tank with Spring Self-Adaptive Auxiliary Control System," Energies, MDPI, vol. 12(13), pages 1-19, July.
    20. Guo, Wencheng & Yang, Jiandong, 2018. "Dynamic performance analysis of hydro-turbine governing system considering combined effect of downstream surge tank and sloping ceiling tailrace tunnel," Renewable Energy, Elsevier, vol. 129(PA), pages 638-651.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0314998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.