IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2590-d547735.html
   My bibliography  Save this article

Optimization of Ferrites Structure by Using a New Core-Less Design Algorithm for Electric Vehicle Wireless Power Transfer

Author

Listed:
  • Kaiwen Chen

    (Power Electronics Research Centre, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Jianfei Pan

    (College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518000, China)

  • Yun Yang

    (Power Electronics Research Centre, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Ka Wai Eric Cheng

    (Power Electronics Research Centre, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

Abstract

In order to improve the customers’ continuous usage of electrical vehicles (EVs) and reduce the weight of the energy storage devices, wireless charging technology has been widely studied, updated, and commercialized in recent decades, regarding to its distinct superiority of great convenience and low risk. A higher coupling coefficient is the key factor that impacts the transmission efficiency, thus in most medium-power (hundreds of watts) to high-power (several kilowatts) wireless charging systems, ferrites are used to guide the magnetic flux and intensify the magnetic density. However, the weight of the ferrite itself puts an extra burden on the system, and the core loss during operation also reduces the total efficiency and output power. This paper proposes an optimized design algorithm based on a core-less method for the magnetic core, where the core loss and the coupling coefficient are consequently balanced, and the overall weight and efficiency of the system can be optimized. The iteration procedure is applied on the basis of removed ferrite length and thickness in the algorithm. In the simulation, a square coupler with a total volume of 300 mm × 150 mm, a circular coupler of 150 mm × 150 mm and a Double-D (DD) coupler of 300 mm × 150 mm are used to verify the advantages of the proposed method. The optimized ferrite structures are specific for each coupler shape, and the improvement is proved to be universal in current scale by means of 3-D finite element analysis.

Suggested Citation

  • Kaiwen Chen & Jianfei Pan & Yun Yang & Ka Wai Eric Cheng, 2021. "Optimization of Ferrites Structure by Using a New Core-Less Design Algorithm for Electric Vehicle Wireless Power Transfer," Energies, MDPI, vol. 14(9), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2590-:d:547735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2590/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2590/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weitong Chen & Chunhua Liu & Christopher H.T. Lee & Zhiqiang Shan, 2016. "Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    2. Zhichao Luo & Xuezhe Wei, 2018. "Theoretical Analysis of Planar Spiral Coils between Two Multilayer Media for Electric Vehicle Wireless Charging," Energies, MDPI, vol. 11(4), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Songyan & Xu, Haiqi & Sun, Zhirui & Shao, Z.Y. & Jian, Linni, 2019. "The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    3. Yixiao Luo & Chunhua Liu & Feng Yu & Christopher H.T. Lee, 2017. "Design and Evaluation of an Efficient Three-Phase Four-Leg Voltage Source Inverter with Reduced IGBTs," Energies, MDPI, vol. 10(4), pages 1-14, April.
    4. Karam Hwang & Jaeyong Cho & Dongwook Kim & Jaehyoung Park & Jong Hwa Kwon & Sang Il Kwak & Hyun Ho Park & Seungyoung Ahn, 2017. "An Autonomous Coil Alignment System for the Dynamic Wireless Charging of Electric Vehicles to Minimize Lateral Misalignment," Energies, MDPI, vol. 10(3), pages 1-20, March.
    5. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    6. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    7. Li Zhai & Yu Cao & Liwen Lin & Tao Zhang & Steven Kavuma, 2018. "Mitigation Conducted Emission Strategy Based on Transfer Function from a DC-Fed Wireless Charging System for Electric Vehicles," Energies, MDPI, vol. 11(3), pages 1-17, February.
    8. Machura, Philip & Li, Quan, 2019. "A critical review on wireless charging for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 209-234.
    9. Dongwook Kim & Hongseok Kim & Anfeng Huang & Qiusen He & Hanyu Zhang & Seungyoung Ahn & Yuyu Zhu & Jun Fan, 2019. "Analysis and Introduction of Effective Permeability with Additional Air-Gaps on Wireless Power Transfer Coils for Electric Vehicle Based on SAE J2954 Recommended Practice," Energies, MDPI, vol. 12(24), pages 1-11, December.
    10. Konstantina Anastasiadou & Nikolaos Gavanas & Magda Pitsiava-Latinopoulou & Evangelos Bekiaris, 2021. "Infrastructure Planning for Autonomous Electric Vehicles, Integrating Safety and Sustainability Aspects: A Multi-Criteria Analysis Approach," Energies, MDPI, vol. 14(17), pages 1-19, August.
    11. Zhongyu Dai & Junhua Wang & Mengjiao Long & Hong Huang, 2017. "A Witricity-Based High-Power Device for Wireless Charging of Electric Vehicles," Energies, MDPI, vol. 10(3), pages 1-14, March.
    12. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Rupak Kharel & Augustine Ikpehai & Haris Gacanin, 2017. "Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer," Energies, MDPI, vol. 10(4), pages 1-18, April.
    13. Ainur Rakhymbay & Anvar Khamitov & Mehdi Bagheri & Batyrbek Alimkhanuly & Maxim Lu & Toan Phung, 2018. "Precise Analysis on Mutual Inductance Variation in Dynamic Wireless Charging of Electric Vehicle," Energies, MDPI, vol. 11(3), pages 1-21, March.
    14. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2590-:d:547735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.