IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2513-d544736.html
   My bibliography  Save this article

Monitoring the Indoor Air Quality: A Case Study of Passive Cooling from Historical Hypogeal Rooms

Author

Listed:
  • Eleonora Laurini

    (Department of Civil, Construction-Architectural and Environmental Engineering, University of L’Aquila, 67100 L’Aquila, Italy)

  • Mariangela De Vita

    (Construction Technologies Institute CNR, Via G. Carducci 32 C, 67100 L’Aquila, Italy)

  • Pierluigi De Berardinis

    (Department of Civil, Construction-Architectural and Environmental Engineering, University of L’Aquila, 67100 L’Aquila, Italy)

Abstract

Attaining a good level of internal comfort is possible by controlling various parameters. Among all, the thermo-hygrometric comfort and the indoor air quality are of fundamental importance. This research is developed with the aim of verifying the indoor air quality following the installation of a passive cooling device in a historic building located in the province of L’Aquila in the municipality of Poggio Picenze in climatic zone E. This research aims to verify the functioning of a ventilation duct installed between the hypogeal and the second level of the structure that was installed to obtain air recirculation by exploiting the inertial potential of the hypogeal room. The first phase of the research was aimed at thermo-hygrometric monitoring using sensors installed on-site and controlled remotely in order to verify the operation of the device. The second-phase object of this text was useful in investigating the acquired indoor air quality level.

Suggested Citation

  • Eleonora Laurini & Mariangela De Vita & Pierluigi De Berardinis, 2021. "Monitoring the Indoor Air Quality: A Case Study of Passive Cooling from Historical Hypogeal Rooms," Energies, MDPI, vol. 14(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2513-:d:544736
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2513/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    2. Brambilla, Arianna & Sangiorgio, Alberto, 2020. "Mould growth in energy efficient buildings: Causes, health implications and strategies to mitigate the risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Eleonora Laurini & Mariangela De Vita & Pierluigi De Berardinis & Avi Friedman, 2018. "Passive Ventilation for Indoor Comfort: A Comparison of Results from Monitoring and Simulation for a Historical Building in a Temperate Climate," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    4. Alexander Rieser & Rainer Pfluger & Alexandra Troi & Daniel Herrera-Avellanosa & Kirsten Engelund Thomsen & Jørgen Rose & Zeynep Durmuş Arsan & Gulden Gokcen Akkurt & Gerhard Kopeinig & Gaëlle Guyot &, 2021. "Integration of Energy-Efficient Ventilation Systems in Historic Buildings—Review and Proposal of a Systematic Intervention Approach," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariangela De Vita & Francesco Duronio & Angelo De Vita & Pierluigi De Berardinis, 2022. "Adaptive Retrofit for Adaptive Reuse: Converting an Industrial Chimney into a Ventilation Duct to Improve Internal Comfort in a Historic Environment," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    2. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    3. Lisa Coulburn & Wendy Miller, 2022. "Prevalence, Risk Factors and Impacts Related to Mould-Affected Housing: An Australian Integrative Review," IJERPH, MDPI, vol. 19(3), pages 1-26, February.
    4. Cristina S. Polo López & Elena Lucchi & Eleonora Leonardi & Antonello Durante & Anne Schmidt & Roger Curtis, 2021. "Risk-Benefit Assessment Scheme for Renewable Solar Solutions in Traditional and Historic Buildings," Sustainability, MDPI, vol. 13(9), pages 1-35, May.
    5. Sanjin Gumbarević & Bojan Milovanović & Bojana Dalbelo Bašić & Mergim Gaši, 2022. "Combining Deep Learning and the Heat Flux Method for In-Situ Thermal-Transmittance Measurement Improvement," Energies, MDPI, vol. 15(14), pages 1-19, July.
    6. Belén Onecha & Alicia Dotor & Carlos Marmolejo-Duarte, 2021. "Beyond Cultural and Historic Values, Sustainability as a New Kind of Value for Historic Buildings," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    7. Lorenzo Diana & Saverio D’Auria & Giovanna Acampa & Giorgia Marino, 2022. "Assessment of Disused Public Buildings: Strategies and Tools for Reuse of Healthcare Structures," Sustainability, MDPI, vol. 14(4), pages 1-25, February.
    8. Nuno Baía Saraiva & Luisa Dias Pereira & Adélio Rodrigues Gaspar & José Joaquim da Costa, 2021. "Barriers on Establishing Passive Strategies in Office Spaces: A Case Study in a Historic University Building," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    9. Bożena Orlik-Kożdoń, 2021. "Polystyrene Waste in Panels for Thermal Retrofitting of Historical Buildings: Experimental Study," Energies, MDPI, vol. 14(7), pages 1-17, March.
    10. Hélène Niculita-Hirzel, 2022. "Latest Trends in Pollutant Accumulations at Threatening Levels in Energy-Efficient Residential Buildings with and without Mechanical Ventilation: A Review," IJERPH, MDPI, vol. 19(6), pages 1-12, March.
    11. Xueyan Zhang & Jingyi Liang & Beibei Wang & Yang Lv & Jingchao Xie, 2020. "Indoor Air Design Parameters of Air Conditioners for Mold-Prevention and Antibacterial in Island Residential Buildings," IJERPH, MDPI, vol. 17(19), pages 1-16, October.
    12. Muhammad Aashed Khan Abbasi & Shabir Hussain Khahro & Yasir Javed, 2021. "Carbon Dioxide Footprint and Its Impacts: A Case of Academic Buildings," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    13. Mingran Mao & Chunzao Feng & Junxian Pei & Huidong Liu & Haifeng Jiang, 2023. "A Triple-Layer Membrane with Hybrid Evaporation and Radiation for Building Cooling," Energies, MDPI, vol. 16(6), pages 1-11, March.
    14. Alexander Rieser & Rainer Pfluger & Alexandra Troi & Daniel Herrera-Avellanosa & Kirsten Engelund Thomsen & Jørgen Rose & Zeynep Durmuş Arsan & Gulden Gokcen Akkurt & Gerhard Kopeinig & Gaëlle Guyot &, 2021. "Integration of Energy-Efficient Ventilation Systems in Historic Buildings—Review and Proposal of a Systematic Intervention Approach," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    15. Nuodi Fu & Moon Keun Kim & Bing Chen & Stephen Sharples, 2021. "Comparative Modelling Analysis of Air Pollutants, PM 2.5 and Energy Efficiency Using Three Ventilation Strategies in a High-Rise Building: A Case Study in Suzhou, China," Sustainability, MDPI, vol. 13(15), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2513-:d:544736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.