IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1940-d527705.html
   My bibliography  Save this article

A Review on Additive Manufacturing Possibilities for Electrical Machines

Author

Listed:
  • Muhammad Usman Naseer

    (Institute of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Ants Kallaste

    (Institute of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Bilal Asad

    (Institute of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia
    Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland)

  • Toomas Vaimann

    (Institute of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Anton Rassõlkin

    (Institute of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

Abstract

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.

Suggested Citation

  • Muhammad Usman Naseer & Ants Kallaste & Bilal Asad & Toomas Vaimann & Anton Rassõlkin, 2021. "A Review on Additive Manufacturing Possibilities for Electrical Machines," Energies, MDPI, vol. 14(7), pages 1-24, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1940-:d:527705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1940/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1940/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chengcheng Liu & Jiawei Lu & Youhua Wang & Gang Lei & Jianguo Zhu & Youguang Guo, 2017. "Techniques for Reduction of the Cogging Torque in Claw Pole Machines with SMC Cores," Energies, MDPI, vol. 10(10), pages 1-17, October.
    2. Thang Pham & Patrick Kwon & Shanelle Foster, 2021. "Additive Manufacturing and Topology Optimization of Magnetic Materials for Electrical Machines—A Review," Energies, MDPI, vol. 14(2), pages 1-24, January.
    3. Chengcheng Liu & Jiawei Lu & Youhua Wang & Gang Lei & Jianguo Zhu & Youguang Guo, 2018. "Design Issues for Claw Pole Machines with Soft Magnetic Composite Cores," Energies, MDPI, vol. 11(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahid Hussain & Ants Kallaste & Toomas Vaimann, 2023. "Recent Trends in Additive Manufacturing and Topology Optimization of Reluctance Machines," Energies, MDPI, vol. 16(9), pages 1-19, April.
    2. Hans Tiismus & Ants Kallaste & Toomas Vaimann & Liina Lind & Indrek Virro & Anton Rassõlkin & Tatjana Dedova, 2022. "Laser Additively Manufactured Magnetic Core Design and Process for Electrical Machine Applications," Energies, MDPI, vol. 15(10), pages 1-26, May.
    3. Víctor Ballestín-Bernad & Jesús Sergio Artal-Sevil & José Antonio Domínguez-Navarro, 2023. "Prototype of a Two-Phase Axial-Gap Transverse Flux Generator Based on Reused Components and 3D Printing," Energies, MDPI, vol. 16(4), pages 1-20, February.
    4. Toomas Vaimann & Ants Kallaste, 2023. "Additive Manufacturing of Electrical Machines—Towards the Industrial Use of a Novel Technology," Energies, MDPI, vol. 16(1), pages 1-10, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youguang Guo & Xin Ba & Lin Liu & Haiyan Lu & Gang Lei & Wenliang Yin & Jianguo Zhu, 2023. "A Review of Electric Motors with Soft Magnetic Composite Cores for Electric Drives," Energies, MDPI, vol. 16(4), pages 1-17, February.
    2. Andrzej Łebkowski, 2018. "Design, Analysis of the Location and Materials of Neodymium Magnets on the Torque and Power of In-Wheel External Rotor PMSM for Electric Vehicles," Energies, MDPI, vol. 11(9), pages 1-23, August.
    3. Xin Ba & Zhenjie Gong & Youguang Guo & Chengning Zhang & Jianguo Zhu, 2022. "Development of Equivalent Circuit Models of Permanent Magnet Synchronous Motors Considering Core Loss," Energies, MDPI, vol. 15(6), pages 1-18, March.
    4. Chengcheng Liu & Jiawei Lu & Youhua Wang & Gang Lei & Jianguo Zhu & Youguang Guo, 2018. "Design Issues for Claw Pole Machines with Soft Magnetic Composite Cores," Energies, MDPI, vol. 11(8), pages 1-15, August.
    5. Pere Andrada & Balduí Blanqué & Eusebi Martínez & José Ignacio Perat & José Antonio Sánchez & Marcel Torrent, 2019. "Influence of Manufacturing and Assembly Defects and the Quality of Materials on the Performance of an Axial-Flux Switched Reluctance Machine," Energies, MDPI, vol. 12(24), pages 1-12, December.
    6. Tamás Orosz & Tamás Horváth & Balázs Tóth & Miklós Kuczmann & Bence Kocsis, 2023. "Iron Loss Calculation Methods for Numerical Analysis of 3D-Printed Rotating Machines: A Review," Energies, MDPI, vol. 16(18), pages 1-27, September.
    7. Miguel García-Gracia & Ángel Jiménez Romero & Jorge Herrero Ciudad & Susana Martín Arroyo, 2018. "Cogging Torque Reduction Based on a New Pre-Slot Technique for a Small Wind Generator," Energies, MDPI, vol. 11(11), pages 1-15, November.
    8. Youguang Guo & Lin Liu & Xin Ba & Haiyan Lu & Gang Lei & Wenliang Yin & Jianguo Zhu, 2022. "Measurement and Modeling of Magnetic Materials under 3D Vectorial Magnetization for Electrical Machine Design and Analysis," Energies, MDPI, vol. 16(1), pages 1-11, December.
    9. Víctor Ballestín-Bernad & Jesús Sergio Artal-Sevil & José Antonio Domínguez-Navarro, 2021. "A Review of Transverse Flux Machines Topologies and Design," Energies, MDPI, vol. 14(21), pages 1-34, November.
    10. Hans Tiismus & Ants Kallaste & Toomas Vaimann & Liina Lind & Indrek Virro & Anton Rassõlkin & Tatjana Dedova, 2022. "Laser Additively Manufactured Magnetic Core Design and Process for Electrical Machine Applications," Energies, MDPI, vol. 15(10), pages 1-26, May.
    11. T. A. Anuja & M. Arun Noyal Doss, 2021. "Reduction of Cogging Torque in Surface Mounted Permanent Magnet Brushless DC Motor by Adapting Rotor Magnetic Displacement," Energies, MDPI, vol. 14(10), pages 1-20, May.
    12. Reza Zeinali & Ozan Keysan, 2019. "A Rare-Earth Free Magnetically Geared Generator for Direct-Drive Wind Turbines," Energies, MDPI, vol. 12(3), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1940-:d:527705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.