IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1267-d505701.html
   My bibliography  Save this article

An Experimental Study on the Characteristics of NO x Distributions at the SNCR Inlets of a Large-Scale CFB Boiler

Author

Listed:
  • Jin Yan

    (College of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
    Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing University, Chongqing 400044, China)

  • Xiaofeng Lu

    (Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing University, Chongqing 400044, China)

  • Changfei Zhang

    (College of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
    Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China)

  • Qianjun Li

    (College of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
    Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China)

  • Jinping Wang

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China)

  • Shirong Liu

    (Datang Wu’an Power Plant Co. Ltd., Handan 056300, China)

  • Xiong Zheng

    (Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing University, Chongqing 400044, China)

  • Xuchen Fan

    (Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing University, Chongqing 400044, China)

Abstract

The unknown NO x distributions inside large-scale CFB (circulating fluidized bed) boilers have always hindered the economy of the SNCR (selective non-catalytic reduction) process. In this study, field tests were carried out on a typical 300 MW CFB boiler, where multi-level 316 L-made probe and Ecom-J2KN/Testo 350 analyzers were used to perform detailed two-dimensional distributions of flue gas composition at SNCR inlets for the first time. The penetration depth inside the horizontal flue pass was up to 7 m. The NO x distributions were analyzed in detail combining with the auxiliary test in the dilute phase zone. Key results show that the average O 2 concentrations in #A and #C regions were 6.52% and 0.95%, respectively. The vertical NO x distributions of #A and #C SNCR inlets were similar, showing a trend of first increasing and then decreasing with peak value all appeared at 5 m depth, while the NO x distribution of #B SNCR inlet was basically increasing. Some local areas with extremely high NO x concentration (over 2000 mg/m 3 ) were observed near the inclined edge of SNCR inlets, which has never been reported before. Based on this, the optimization of urea injections was conducted, which could save 15.7% of the urea solution consumption while ensuring ultra-low emission of NO x .

Suggested Citation

  • Jin Yan & Xiaofeng Lu & Changfei Zhang & Qianjun Li & Jinping Wang & Shirong Liu & Xiong Zheng & Xuchen Fan, 2021. "An Experimental Study on the Characteristics of NO x Distributions at the SNCR Inlets of a Large-Scale CFB Boiler," Energies, MDPI, vol. 14(5), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1267-:d:505701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1267/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1267/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin Yan & Xiaofeng Lu & Xiong Zheng & Rui Xue & Xiujian Lei & Xuchen Fan & Shirong Liu, 2020. "Experimental Investigations on Lateral Dispersion Coefficients of Fuel Particles in Large-Scale Circulating Fluidized Bed Boilers with Different Coal Feeding Modes," Energies, MDPI, vol. 13(23), pages 1-17, December.
    2. Yan, Jin & Lu, Xiaofeng & Song, Yangfan & Zheng, Xiong & Lei, Xiujian & Liu, Zhuo & Fan, Xuchen & Liu, Congcong, 2021. "A comprehensive understanding of the non-uniform characteristics and regulation mechanism of six external loops in a 600 MW supercritical CFB boiler," Energy, Elsevier, vol. 222(C).
    3. Blaszczuk, Artur & Pogorzelec, Michal & Shimizu, Tadaaki, 2018. "Heat transfer characteristics in a large-scale bubbling fluidized bed with immersed horizontal tube bundles," Energy, Elsevier, vol. 162(C), pages 10-19.
    4. Xuemin Liu & Hairui Yang & Junfu Lyu, 2020. "Optimization of Fluidization State of a Circulating Fluidized Bed Boiler for Economical Operation," Energies, MDPI, vol. 13(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoliang Yu & Jin Yan & Rongyue Sun & Lin Mei & Yanmin Li & Shuyuan Wang & Fan Wang & Yicheng Gu, 2023. "An Experimental Study on SO 2 Emission and Ash Deposition Characteristics of High Alkali Red Mud under Large Proportional Co-Combustion Conditions in Fluidized Bed," Energies, MDPI, vol. 16(6), pages 1-17, March.
    2. Xiong Zheng & Jin Yan & Jinping Wang & Xiaofeng Lu, 2021. "Numerical Study of the Influence of Secondary Air Uniformity on Jet Penetration and Gas-Solid Diffusion Characteristics in a Large-Scale CFB Boiler," Energies, MDPI, vol. 14(18), pages 1-19, September.
    3. Boyu Deng & Yi Zhang & Hairui Yang, 2022. "Operation Optimization of Circulating Fluidized Bed Boilers Integration of Variable Renewables," Energies, MDPI, vol. 15(16), pages 1-3, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhuo & Li, Jianbo & Long, Xiaofei & Lu, Xiaofeng, 2022. "Mechanisms and characteristics of ash layer formation on bed particles during circulating fluidized bed combustion of Zhundong lignite," Energy, Elsevier, vol. 245(C).
    2. Zhonghao Dong & Xiaofeng Lu & Rongdi Zhang & Jianbo Li & Zhaoliang Wu & Zhicun Liu & Yanting Yang & Quanhai Wang & Yinhu Kang, 2024. "Methods and Applications of Full-Scale Field Testing for Large-Scale Circulating Fluidized Bed Boilers," Energies, MDPI, vol. 17(4), pages 1-37, February.
    3. Artur Blaszczuk & Szymon Jagodzik, 2021. "Investigation of Heat Transfer in a Large-Scale External Heat Exchanger with Horizontal Smooth Tube Bundle," Energies, MDPI, vol. 14(17), pages 1-24, September.
    4. Boyu Deng & Tuo Zhou & Shuangming Zhang & Haowen Wu & Xiaoguo Jiang & Man Zhang & Hairui Yang, 2022. "Safety Analysis on the Heating Surfaces in the 660 MW Ultra-Supercritical CFB Boiler under Sudden Electricity Failure," Energies, MDPI, vol. 15(21), pages 1-15, October.
    5. Li, Dongfang & Qu, Xiaoxiao & Li, Junjie & Hong, Suck Won & Jeon, Chung-hwan, 2022. "Microstructural development of product layer during limestone sulfation and its relationship to agglomeration in large-scale CFB boiler," Energy, Elsevier, vol. 238(PC).
    6. Madejski, Paweł & Taler, Dawid & Taler, Jan, 2022. "Thermal and flow calculations of platen superheater in large scale CFB boiler," Energy, Elsevier, vol. 258(C).
    7. Moon, Ji-Hong & Jo, Sung-Ho & Park, Sung Jin & Khoi, Nguyen Hoang & Seo, Myung Won & Ra, Ho Won & Yoon, Sang-Jun & Yoon, Sung-Min & Lee, Jae-Goo & Mun, Tae-Young, 2019. "Carbon dioxide purity and combustion characteristics of oxy firing compared to air firing in a pilot-scale circulating fluidized bed," Energy, Elsevier, vol. 166(C), pages 183-192.
    8. Hannes Vogtenhuber & Dominik Pernsteiner & René Hofmann, 2019. "Experimental and Numerical Investigations on Heat Transfer of Bare Tubes in a Bubbling Fluidized Bed with Respect to Better Heat Integration in Temperature Swing Adsorption Systems," Energies, MDPI, vol. 12(14), pages 1-26, July.
    9. Xueshen Wang & Zheng Gan & Shengwei Xin & Chunzhen Yang, 2023. "Study on Gas–Solid Two–Phase Flow Characteristics of One–Furnace with Two–Tower Semi–Dry Desulfurization in Circulating Fluidized Bed Boiler," Energies, MDPI, vol. 16(4), pages 1-13, February.
    10. Yan, Jin & Lu, Xiaofeng & Song, Yangfan & Zheng, Xiong & Lei, Xiujian & Liu, Zhuo & Fan, Xuchen & Liu, Congcong, 2021. "A comprehensive understanding of the non-uniform characteristics and regulation mechanism of six external loops in a 600 MW supercritical CFB boiler," Energy, Elsevier, vol. 222(C).
    11. Xiong Zheng & Jin Yan & Jinping Wang & Xiaofeng Lu, 2021. "Numerical Study of the Influence of Secondary Air Uniformity on Jet Penetration and Gas-Solid Diffusion Characteristics in a Large-Scale CFB Boiler," Energies, MDPI, vol. 14(18), pages 1-19, September.
    12. Li, Dongfang & Kim, Kyeongho & Kim, Minwoo & Zeng, Yijie & Yang, Zhongzhi & Lee, Sangho & Lu, Xiaofeng & Jeon, Chung-Hwan, 2021. "Effects of particle size on bed-to-surface heat transfer in bubbling fluidized bed heat exchangers of 550 MWe ultra-supercritical CFB boiler," Energy, Elsevier, vol. 222(C).
    13. Li, Dongfang & Ke, Xiwei & Zhang, Man & Yang, Hairui & Jung, Sungmook & Ahn, Seokgi & Jeon, Chung-Hwan, 2020. "A comprehensive mass balance model of a 550 MWe ultra-supercritical CFB boiler with internal circulation," Energy, Elsevier, vol. 206(C).
    14. Nam, Hyungseok & Kim, Jung Hwan & Kim, Hana & Kim, Min Jae & Jeon, Sang-Goo & Jin, Gyoung-Tae & Won, Yooseob & Hwang, Byung Wook & Lee, Seung-Yong & Baek, Jeom-In & Lee, Doyeon & Seo, Myung Won & Ryu,, 2021. "CO2 methanation in a bench-scale bubbling fluidized bed reactor using Ni-based catalyst and its exothermic heat transfer analysis," Energy, Elsevier, vol. 214(C).
    15. Jin Yan & Xiaofeng Lu & Xiong Zheng & Rui Xue & Xiujian Lei & Xuchen Fan & Shirong Liu, 2020. "Experimental Investigations on Lateral Dispersion Coefficients of Fuel Particles in Large-Scale Circulating Fluidized Bed Boilers with Different Coal Feeding Modes," Energies, MDPI, vol. 13(23), pages 1-17, December.
    16. Li, Dongfang & Cai, Runxia & Zhang, Man & Yang, Hairui & Choi, Kyeong & Ahn, Seokgi & Jeon, Chung-Hwan, 2020. "Operation characteristics of a bubbling fluidized bed heat exchanger with internal solid circulation for a 550-MWe ultra-supercritical CFB boiler," Energy, Elsevier, vol. 192(C).
    17. Li Nie & Jiayi Lu & Qigang Deng & Liming Gong & Dayong Xue & Zhongzhi Yang & Xiaofeng Lu, 2022. "Study on the Uniformity of Secondary Air of a 660 MW Ultra-Supercritical CFB Boiler," Energies, MDPI, vol. 15(10), pages 1-12, May.
    18. Ocanha, Enzo Schlottfeldt & Zinani, Flávia Schwarz Franceschini & Modolo, Regina Celia Espinosa & Santos, Fernando Almeida, 2020. "Assesment of the effects of chemical and physical parameters in the fluidization of biomass and sand binary mixtures through statistical analysis," Energy, Elsevier, vol. 190(C).
    19. Judt, W. & Ciupek, B. & Urbaniak, R., 2020. "Numerical study of a heat transfer process in a low power heating boiler equipped with afterburning chamber," Energy, Elsevier, vol. 196(C).
    20. Nam, Hyungseok & Won, Yooseob & Kim, Jae-Young & Yi, Chang-Keun & Park, Young Cheol & Woo, Jae Min & Jung, Su-Yeong & Jin, Gyoung-Tae & Jo, Sung-Ho & Lee, Seung-Yong & Kim, Hyunuk & Park, Jaehyeon, 2020. "Hydrodynamics and heat transfer coefficients during CO2 carbonation reaction in a circulated fluidized bed reactor using 200 kg potassium-based dry sorbent," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1267-:d:505701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.