IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6148-d644060.html
   My bibliography  Save this article

Progress in Catalytic Decomposition and Removal of N 2 O in Fluidized Bed

Author

Listed:
  • Miao Miao

    (State Key Laboratory of Power System and Generation Equipment, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Man Zhang

    (State Key Laboratory of Power System and Generation Equipment, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Hao Kong

    (State Key Laboratory of Power System and Generation Equipment, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Tuo Zhou

    (State Key Laboratory of Power System and Generation Equipment, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Xinhua Yang

    (State Key Laboratory of Power System and Generation Equipment, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Hairui Yang

    (State Key Laboratory of Power System and Generation Equipment, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

Abstract

As a clean fuel combustion technology, the circulating fluidized bed (CFB) has been developed rapidly in recent years, but one of its disadvantages is high N 2 O emissions. With the implementation of increasingly strict pollution control standards, N 2 O decomposition and removal technologies have become the main focus of current research. This paper reviews the latest research on noble metals, metal oxides, the molecular sieve and other new catalysts and decomposition methods for N 2 O removal. The research methods and functions of catalysts are compared and the existing problems are summarized. The future directions of development in N 2 O decomposition and removal are considered. Noble metals and the molecular sieve show satisfactory activity at relatively low temperatures, but their catalytic efficiency is obviously hindered by O 2 , NO and H 2 O. In addition, high costs and insufficient thermal stability limit their widespread industrial application. The metal oxide catalytic technology, especially oxygen carrier-aided combustion (OCAC), is expected to be the ideal method for N 2 O removal in CFB boilers due to its stability and economical feasibility.

Suggested Citation

  • Miao Miao & Man Zhang & Hao Kong & Tuo Zhou & Xinhua Yang & Hairui Yang, 2021. "Progress in Catalytic Decomposition and Removal of N 2 O in Fluidized Bed," Energies, MDPI, vol. 14(19), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6148-:d:644060
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blaszczuk, Artur & Pogorzelec, Michal & Shimizu, Tadaaki, 2018. "Heat transfer characteristics in a large-scale bubbling fluidized bed with immersed horizontal tube bundles," Energy, Elsevier, vol. 162(C), pages 10-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Yan & Xiaofeng Lu & Changfei Zhang & Qianjun Li & Jinping Wang & Shirong Liu & Xiong Zheng & Xuchen Fan, 2021. "An Experimental Study on the Characteristics of NO x Distributions at the SNCR Inlets of a Large-Scale CFB Boiler," Energies, MDPI, vol. 14(5), pages 1-15, February.
    2. Artur Blaszczuk & Szymon Jagodzik, 2021. "Investigation of Heat Transfer in a Large-Scale External Heat Exchanger with Horizontal Smooth Tube Bundle," Energies, MDPI, vol. 14(17), pages 1-24, September.
    3. Li, Dongfang & Qu, Xiaoxiao & Li, Junjie & Hong, Suck Won & Jeon, Chung-hwan, 2022. "Microstructural development of product layer during limestone sulfation and its relationship to agglomeration in large-scale CFB boiler," Energy, Elsevier, vol. 238(PC).
    4. Madejski, Paweł & Taler, Dawid & Taler, Jan, 2022. "Thermal and flow calculations of platen superheater in large scale CFB boiler," Energy, Elsevier, vol. 258(C).
    5. Moon, Ji-Hong & Jo, Sung-Ho & Park, Sung Jin & Khoi, Nguyen Hoang & Seo, Myung Won & Ra, Ho Won & Yoon, Sang-Jun & Yoon, Sung-Min & Lee, Jae-Goo & Mun, Tae-Young, 2019. "Carbon dioxide purity and combustion characteristics of oxy firing compared to air firing in a pilot-scale circulating fluidized bed," Energy, Elsevier, vol. 166(C), pages 183-192.
    6. Hannes Vogtenhuber & Dominik Pernsteiner & René Hofmann, 2019. "Experimental and Numerical Investigations on Heat Transfer of Bare Tubes in a Bubbling Fluidized Bed with Respect to Better Heat Integration in Temperature Swing Adsorption Systems," Energies, MDPI, vol. 12(14), pages 1-26, July.
    7. Yan, Jin & Lu, Xiaofeng & Song, Yangfan & Zheng, Xiong & Lei, Xiujian & Liu, Zhuo & Fan, Xuchen & Liu, Congcong, 2021. "A comprehensive understanding of the non-uniform characteristics and regulation mechanism of six external loops in a 600 MW supercritical CFB boiler," Energy, Elsevier, vol. 222(C).
    8. Li, Dongfang & Kim, Kyeongho & Kim, Minwoo & Zeng, Yijie & Yang, Zhongzhi & Lee, Sangho & Lu, Xiaofeng & Jeon, Chung-Hwan, 2021. "Effects of particle size on bed-to-surface heat transfer in bubbling fluidized bed heat exchangers of 550 MWe ultra-supercritical CFB boiler," Energy, Elsevier, vol. 222(C).
    9. Li, Dongfang & Ke, Xiwei & Zhang, Man & Yang, Hairui & Jung, Sungmook & Ahn, Seokgi & Jeon, Chung-Hwan, 2020. "A comprehensive mass balance model of a 550 MWe ultra-supercritical CFB boiler with internal circulation," Energy, Elsevier, vol. 206(C).
    10. Nam, Hyungseok & Kim, Jung Hwan & Kim, Hana & Kim, Min Jae & Jeon, Sang-Goo & Jin, Gyoung-Tae & Won, Yooseob & Hwang, Byung Wook & Lee, Seung-Yong & Baek, Jeom-In & Lee, Doyeon & Seo, Myung Won & Ryu,, 2021. "CO2 methanation in a bench-scale bubbling fluidized bed reactor using Ni-based catalyst and its exothermic heat transfer analysis," Energy, Elsevier, vol. 214(C).
    11. Li, Dongfang & Cai, Runxia & Zhang, Man & Yang, Hairui & Choi, Kyeong & Ahn, Seokgi & Jeon, Chung-Hwan, 2020. "Operation characteristics of a bubbling fluidized bed heat exchanger with internal solid circulation for a 550-MWe ultra-supercritical CFB boiler," Energy, Elsevier, vol. 192(C).
    12. Ocanha, Enzo Schlottfeldt & Zinani, Flávia Schwarz Franceschini & Modolo, Regina Celia Espinosa & Santos, Fernando Almeida, 2020. "Assesment of the effects of chemical and physical parameters in the fluidization of biomass and sand binary mixtures through statistical analysis," Energy, Elsevier, vol. 190(C).
    13. Judt, W. & Ciupek, B. & Urbaniak, R., 2020. "Numerical study of a heat transfer process in a low power heating boiler equipped with afterburning chamber," Energy, Elsevier, vol. 196(C).
    14. Nam, Hyungseok & Won, Yooseob & Kim, Jae-Young & Yi, Chang-Keun & Park, Young Cheol & Woo, Jae Min & Jung, Su-Yeong & Jin, Gyoung-Tae & Jo, Sung-Ho & Lee, Seung-Yong & Kim, Hyunuk & Park, Jaehyeon, 2020. "Hydrodynamics and heat transfer coefficients during CO2 carbonation reaction in a circulated fluidized bed reactor using 200 kg potassium-based dry sorbent," Energy, Elsevier, vol. 193(C).
    15. Miao, Miao & Deng, Boyu & Kong, Hao & Yang, Hairui & Lyu, Junfu & Jiang, Xiaoguo & Zhang, Man, 2021. "Effects of volatile matter and oxygen concentration on combustion characteristics of coal in an oxygen-enriched fluidized bed," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6148-:d:644060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.