IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p862-d495132.html
   My bibliography  Save this article

Impact of Heat Transfer on Transient Stress Fields in Power Plant Boiler Components

Author

Listed:
  • Jerzy Okrajni

    (Faculty of Materials Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Mariusz Twardawa

    (RAFAKO S.A., 47-400 Racibórz, Poland)

  • Krzysztof Wacławiak

    (Faculty of Materials Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

In boilers operating in modern power plants, thick-walled elements of complex shapes, such as valves, superheater headers, T-pipes, Y-pipes, four-way pipes, and elbows, are especially prone to fatigue processes. Higher operation parameters and more frequent startups may speed up fatigue damage in these elements. Such damage is a local phenomenon and is caused by thermomechanical fatigue (TMF). This paper presents a method designed for predicting the behavior of components subjected to variable temperature and mechanical loading conditions. This method combines the results of measurements of operating parameters of devices under industrial conditions with those obtained using finite element modeling (FEM). Particular attention was given to the influence of the time-dependent heat transfer coefficient on the local thermomechanical stress–strain behavior of the material. It was stated that heat transfer conditions have a significant impact on local transient stresses and depend on the operation parameters of boilers. Consistency of the temperature changes as a function of time, determined in industrial conditions and calculated on the basis of the model approach, was obtained. This developed and described in the work approach enables defining the conditions of heat transfer on the surface of models of considered components.

Suggested Citation

  • Jerzy Okrajni & Mariusz Twardawa & Krzysztof Wacławiak, 2021. "Impact of Heat Transfer on Transient Stress Fields in Power Plant Boiler Components," Energies, MDPI, vol. 14(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:862-:d:495132
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magdalena Jaremkiewicz & Jan Taler, 2020. "Online Determining Heat Transfer Coefficient for Monitoring Transient Thermal Stresses," Energies, MDPI, vol. 13(3), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerzy Okrajni & Krzysztof Wacławiak & Mariusz Twardawa & Grzegorz Junak, 2022. "The Impact of Conventional Power Block Startup Procedures on the Fatigue Behavior of Drum Materials," Energies, MDPI, vol. 15(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernanda Mitchelly Vilas Boas & Luiz Eduardo Borges-da-Silva & Helcio Francisco Villa-Nova & Erik Leandro Bonaldi & Levy Ely Lacerda Oliveira & Germano Lambert-Torres & Frederico de Oliveira Assuncao , 2021. "Condition Monitoring of Internal Combustion Engines in Thermal Power Plants Based on Control Charts and Adapted Nelson Rules," Energies, MDPI, vol. 14(16), pages 1-17, August.
    2. Magda Joachimiak, 2021. "Analysis of Thermodynamic Parameter Variability in a Chamber of a Furnace for Thermo-Chemical Treatment," Energies, MDPI, vol. 14(10), pages 1-18, May.
    3. Taler, Dawid & Dzierwa, Piotr & Kaczmarski, Karol & Taler, Jan, 2022. "Increase the flexibility of steam boilers by optimisation of critical pressure component heating," Energy, Elsevier, vol. 250(C).
    4. Jerzy Okrajni & Krzysztof Wacławiak & Mariusz Twardawa & Grzegorz Junak, 2022. "The Impact of Conventional Power Block Startup Procedures on the Fatigue Behavior of Drum Materials," Energies, MDPI, vol. 15(10), pages 1-19, May.
    5. Taler, Dawid & Dzierwa, Piotr & Kaczmarski, Karol & Taler, Jan, 2021. "Optimisation of heating and cooling of pressure thick-walled components operating in the saturated steam area," Energy, Elsevier, vol. 231(C).
    6. Jerzy Okrajni & Krzysztof Wacławiak, 2023. "Heat Transfer in the Components of Power Boilers and Related Technological and Endurance Problems," Energies, MDPI, vol. 16(12), pages 1-4, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:862-:d:495132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.