IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p343-d477597.html
   My bibliography  Save this article

Engineering Parameters of Rice Straw Concrete with Granulated Blast Furnace Slag

Author

Listed:
  • Taha Ashour

    (Agriculture Engineering Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh, Kalubia 13736, Egypt)

  • Mohamad Morsy

    (Agriculture Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt)

  • Azra Korjenic

    (Research Unit of Ecological Building Technologies, Institute of Material Technology, Building Physics and Building Ecology, Vienna University of Technology, Karlsplatz 13/207-03, A-1040 Vienna, Austria)

  • Henriette Fischer

    (Research Unit of Ecological Building Technologies, Institute of Material Technology, Building Physics and Building Ecology, Vienna University of Technology, Karlsplatz 13/207-03, A-1040 Vienna, Austria)

  • Mervat Khalil

    (National Research Center of Housing and Buildings, Institute of Building Physics and Environment, Cairo 12622, Egypt)

  • Eldira Sesto

    (Research Unit of Ecological Building Technologies, Institute of Material Technology, Building Physics and Building Ecology, Vienna University of Technology, Karlsplatz 13/207-03, A-1040 Vienna, Austria)

  • Mohammed Orabi

    (Agricultural Engineering Research Institute, Nadi El -Said St. Dokki - P.O. Box 256, Giza 12411, Egypt)

  • Ibrahim Yehia

    (Agricultural Engineering Research Institute, Nadi El -Said St. Dokki - P.O. Box 256, Giza 12411, Egypt)

Abstract

The construction industry is responsible for a large amount of both embodied carbon and emissions. Especially with concrete, there is still a lot of potential for designing recipes in a more ecological way. Approaches to reduce the environmental impact of concrete include the use of industrial and agricultural by-products. This study combines the approaches of replacing cement with granulated blast furnace slag and the use of NaOH-treated rice straw fibers. The research objective comprises the design of an ecologically optimized concrete as well as the question of whether a pretreatment of rice straw fibers with NaOH improves the performance of the designed concrete. The method includes mechanical and physical testing of the of the designed concrete as well as an optical analysis with a scanning electron microscope. The results indicated that treating rice straw with 1% NaOH indicates a better bond between fibers and the surrounding matrix. The tests in which the rice straw was treated with NaOH achieved a higher density, splitting strength, tensile strength and compressive strength. The study contributes an ecologically optimized concrete with granulated blast furnace slag and NaOH-treated rice straw concrete, which shows a great potential as an environmentally friendly, low-cost construction material.

Suggested Citation

  • Taha Ashour & Mohamad Morsy & Azra Korjenic & Henriette Fischer & Mervat Khalil & Eldira Sesto & Mohammed Orabi & Ibrahim Yehia, 2021. "Engineering Parameters of Rice Straw Concrete with Granulated Blast Furnace Slag," Energies, MDPI, vol. 14(2), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:343-:d:477597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pomponi, Francesco & Moncaster, Alice, 2018. "Scrutinising embodied carbon in buildings: The next performance gap made manifest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2431-2442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun-Xi Deng & Xiao Li & Xiao-Juan Li & Tai-Bing Wei, 2023. "Research on the Performance of Recycled-Straw Insulating Concrete and Optimization Design of Matching Ratio," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    2. Yudi Wang & Guoqiang Xu, 2022. "Numerical Simulation of Thermal Storage Performance of Different Concrete Floors," Sustainability, MDPI, vol. 14(19), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    2. Craig Langston & Edwin H. W. Chan & Esther H. K. Yung, 2018. "Hybrid Input-Output Analysis of Embodied Carbon and Construction Cost Differences between New-Build and Refurbished Projects," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    3. Seunghyun Son & Kwangheon Park & Heni Fitriani & Sunkuk Kim, 2021. "Embodied CO 2 Reduction Effects of Composite Precast Concrete Frame for Heavily Loaded Long-Span Logistics Buildings," Sustainability, MDPI, vol. 13(3), pages 1-15, January.
    4. Xingqiang Song & Christel Carlsson & Ramona Kiilsgaard & David Bendz & Helene Kennedy, 2020. "Life Cycle Assessment of Geotechnical Works in Building Construction: A Review and Recommendations," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    5. Wei Zhou & Alice Moncaster & David M Reiner & Peter Guthrie, 2019. "Estimating Lifetimes and Stock Turnover Dynamics of Urban Residential Buildings in China," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    6. Tronchin, Lamberto & Manfren, Massimiliano & James, Patrick AB., 2018. "Linking design and operation performance analysis through model calibration: Parametric assessment on a Passive House building," Energy, Elsevier, vol. 165(PA), pages 26-40.
    7. Luiz de Mello, 2023. "Real Estate in a Post-Pandemic World: How Can Policies Make Housing More Enviromentally Sustainable and Affordable?," Hacienda Pública Española / Review of Public Economics, IEF, vol. 244(1), pages 111-139, March.
    8. Edwin Koźniewski & Karolina Banaszak, 2020. "Geometric Aspects of Assessing the Amount of Material Consumption in the Construction of a Designed Single-Family House," Energies, MDPI, vol. 13(20), pages 1-19, October.
    9. Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
    10. Ming Hu, 2020. "A Building Life-Cycle Embodied Performance Index—The Relationship between Embodied Energy, Embodied Carbon and Environmental Impact," Energies, MDPI, vol. 13(8), pages 1-17, April.
    11. Zhou, Wei & Moncaster, Alice & O'Neill, Eoghan & Reiner, David M. & Wang, Xinke & Guthrie, Peter, 2022. "Modelling future trends of annual embodied energy of urban residential building stock in China," Energy Policy, Elsevier, vol. 165(C).
    12. Manfren, Massimiliano & Nastasi, Benedetto & Tronchin, Lamberto & Groppi, Daniele & Garcia, Davide Astiaso, 2021. "Techno-economic analysis and energy modelling as a key enablers for smart energy services and technologies in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Kevin Allan & Adam R. Phillips, 2021. "Comparative Cradle-to-Grave Life Cycle Assessment of Low and Mid-Rise Mass Timber Buildings with Equivalent Structural Steel Alternatives," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    14. Jim Hart & Francesco Pomponi, 2020. "More Timber in Construction: Unanswered Questions and Future Challenges," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    15. Pan, W. & Teng, Y., 2021. "A systematic investigation into the methodological variables of embodied carbon assessment of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Chen Chen & Zengfeng Zhao & Jianzhuang Xiao & Robert Tiong, 2021. "A Conceptual Framework for Estimating Building Embodied Carbon Based on Digital Twin Technology and Life Cycle Assessment," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
    17. Galina Churkina & Alan Organschi, 2022. "Will a Transition to Timber Construction Cool the Climate?," Sustainability, MDPI, vol. 14(7), pages 1-8, April.
    18. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    19. Manfren, Massimiliano & Nastasi, Benedetto & Groppi, Daniele & Astiaso Garcia, Davide, 2020. "Open data and energy analytics - An analysis of essential information for energy system planning, design and operation," Energy, Elsevier, vol. 213(C).
    20. Weththasinghe, K.K. & Stephan, A. & Francis, V. & Tiwari, P., 2022. "Improving material selection in shopping centres through a parametric life cycle embodied flow and material cost analysis model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:343-:d:477597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.