IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8093-d694273.html
   My bibliography  Save this article

Thermal Fluxes and Solar Energy Storage in a Massive Brick Wall in Natural Conditions

Author

Listed:
  • Mariusz Owczarek

    (Faculty of Civil Engineering and Geodesy, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland)

Abstract

The thermal state of building elements is a combination of steady and transient states. Changes in temperature and energy streams in the wall of the building in the transient state are particularly intense in its outer layer. The factors causing them are solar radiation, ambient temperature and long-wave radiation. Due to the greater variability of these factors during the summer, the importance of the transient state increases at this time. The study analysed heat transfer in three aspects, temperatures in the outer, middle and inner parts of the wall, heat fluxes between these layers and absorption of solar energy, heat transfer coefficient on the wall exterior was also calculated. The analysis is based on temperature measurements at several depths in the wall and measurements of solar radiation. The subject of research is a solid brick wall. The results show that the characteristics of heat flow in winter and summer for the local climate show distinct differences. In the winter, the maximum temperature difference between the external and internal surface of the wall was 10 °C and in summer, 20 °C. In the winter, the negative flux on the internal surface reached 10 W/m 2 and on the external 40 W/m 2 and was constant throughout the day. The mean heat transfer coefficient on the exterior surface for winter week was 8 W/(mK). A Nusselt and Biot number for dimensionless convection analysis was calculated. The research contributes to the calculation of the variability of heat or cold demand in a daily period and to learn about the processes of energy storage in the wall using sensible heat.

Suggested Citation

  • Mariusz Owczarek, 2021. "Thermal Fluxes and Solar Energy Storage in a Massive Brick Wall in Natural Conditions," Energies, MDPI, vol. 14(23), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8093-:d:694273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonopoulos, K.A. & Vrachopoulos, M., 1995. "On the inverse transient heat-transfer problem in structural elements exposed to solar radiation," Renewable Energy, Elsevier, vol. 6(4), pages 381-397.
    2. Mariusz Owczarek & Stefan Owczarek & Adam Baryłka & Andrzej Grzebielec, 2021. "Measurement Method of Thermal Diffusivity of the Building Wall for Summer and Winter Seasons in Poland," Energies, MDPI, vol. 14(13), pages 1-11, June.
    3. Kočí, J. & Fořt, J. & Černý, R., 2020. "Energy efficiency of latent heat storage systems in residential buildings: Coupled effects of wall assembly and climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Sammouda, H. & Royere, C. & Belghith, A. & Maalej, M., 1999. "Heat transfer in a rotating furnace of asolarsand-boiler at a 1000 kW thermal concentrationsystem," Renewable Energy, Elsevier, vol. 17(1), pages 21-47.
    3. Walery Jezierski & Dorota Anna Krawczyk & Beata Sadowska, 2023. "The Impact of Climate Change and Window Parameters on Energy Demand and CO 2 Emissions in a Building with Various Heat Sources," Energies, MDPI, vol. 16(15), pages 1-21, July.
    4. Ana de Jesus & Minna Lammi & Teresa Domenech & Fedra Vanhuyse & Sandro Mendonça, 2021. "Eco-Innovation Diversity in a Circular Economy: Towards Circular Innovation Studies," Sustainability, MDPI, vol. 13(19), pages 1-22, October.
    5. Kočí, Jan & Černý, Robert, 2022. "A design of a semi-virtual calibration experiment for a sensitivity enhancement of general-purpose heat flow meters applied in residential buildings," Energy, Elsevier, vol. 261(PA).
    6. Vrachopoulos, M.Gr. & Filios, A.E. & Fatsis, A. & Mavrommatis, S., 2008. "Determination of the thermal and cooling needs of the broader region of Athens," Renewable Energy, Elsevier, vol. 33(12), pages 2615-2622.
    7. Sammouda, H. & Royere, C. & Belghith, A. & Maalej, M., 1999. "Reflected radiance distribution law for a 1000 kW thermal solar furnace system," Renewable Energy, Elsevier, vol. 17(1), pages 9-20.
    8. Josef Navrátil & Petr Klusáček & Stanislav Martinát & Petr Dvořák, 2021. "Emergence of Centralized (Collective) and Decentralized (Individual) Environmentally Friendly Solutions during the Regeneration of a Residential Building in a Post-Socialist City," Land, MDPI, vol. 10(5), pages 1-21, May.
    9. Adam Ruciński & Andrzej Grzebielec & Maciej Jaworski & Rafał Laskowski & Grzegorz Niewiński & Adam Baryłka & Artur Rusowicz, 2021. "The Problem of Smog-Particle Removal in Large Cities—Experimental Analysis of Some Filtration Materials," Energies, MDPI, vol. 14(23), pages 1-11, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8093-:d:694273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.