IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7813-d684993.html
   My bibliography  Save this article

Long-Term Expansion Planning of the Transmission Network in India under Multi-Dimensional Uncertainty

Author

Listed:
  • Spyros Giannelos

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

  • Anjali Jain

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

  • Stefan Borozan

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

  • Paola Falugi

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

  • Alexandre Moreira

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

  • Rohit Bhakar

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

  • Jyotirmay Mathur

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

  • Goran Strbac

    (Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK)

Abstract

Considerable investment in India’s electricity system may be required in the coming decades in order to help accommodate the expected increase of renewables capacity as part of the country’s commitment to decarbonize its energy sector. In addition, electricity demand is geared to significantly increase due to the ongoing electrification of the transport sector, the growing population, and the improving economy. However, the multi-dimensional uncertainty surrounding these aspects gives rise to the prospect of stranded investments and underutilized network assets, rendering investment decision making challenging for network planners. In this work, a stochastic optimization model is applied to the transmission network in India to identify the optimal expansion strategy in the period from 2020 until 2060, considering conventional network reinforcements as well as energy storage investments. An advanced Nested Benders decomposition algorithm was used to overcome the complexity of the multistage stochastic optimization problem. The model additionally considers the uncertainty around the future investment cost of energy storage. The case study shows that deployment of energy storage is expected on a wide scale across India as it provides a range of benefits, including strategic investment flexibility and increased output from renewables, thereby reducing total expected system costs; this economic benefit of planning with energy storage under uncertainty is quantified as Option Value and is found to be in excess of GBP 12.9 bn. The key message of this work is that under potential high integration of wind and solar in India, there is significant economic benefit associated with the wide-scale deployment of storage in the system.

Suggested Citation

  • Spyros Giannelos & Anjali Jain & Stefan Borozan & Paola Falugi & Alexandre Moreira & Rohit Bhakar & Jyotirmay Mathur & Goran Strbac, 2021. "Long-Term Expansion Planning of the Transmission Network in India under Multi-Dimensional Uncertainty," Energies, MDPI, vol. 14(22), pages 1-27, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7813-:d:684993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7813/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7813/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mateusz Andrychowicz, 2021. "The Impact of Energy Storage along with the Allocation of RES on the Reduction of Energy Costs Using MILP," Energies, MDPI, vol. 14(13), pages 1-15, June.
    2. Mateusz Andrychowicz, 2021. "RES and ES Integration in Combination with Distribution Grid Development Using MILP," Energies, MDPI, vol. 14(2), pages 1-19, January.
    3. Spyros Giannelos & Predrag Djapic & Danny Pudjianto & Goran Strbac, 2020. "Quantification of the Energy Storage Contribution to Security of Supply through the F-Factor Methodology," Energies, MDPI, vol. 13(4), pages 1-15, February.
    4. Laha, Priyanka & Chakraborty, Basab, 2021. "Cost optimal combinations of storage technologies for maximizing renewable integration in Indian power system by 2040: Multi-region approach," Renewable Energy, Elsevier, vol. 179(C), pages 233-247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spyros Giannelos & Stefan Borozan & Marko Aunedi & Xi Zhang & Hossein Ameli & Danny Pudjianto & Ioannis Konstantelos & Goran Strbac, 2023. "Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids," Energies, MDPI, vol. 16(13), pages 1-15, June.
    2. Aditya H. Bhatt & Mireille Rodrigues & Federico Bernardoni & Stefano Leonardi & Armin Zare, 2023. "Stochastic Dynamical Modeling of Wind Farm Turbulence," Energies, MDPI, vol. 16(19), pages 1-24, September.
    3. Riccardo Risso & Lucia Cardona & Maurizio Archetti & Filippo Lossani & Barbara Bosio & Dario Bove, 2023. "A Review of On-Board Carbon Capture and Storage Techniques: Solutions to the 2030 IMO Regulations," Energies, MDPI, vol. 16(18), pages 1-25, September.
    4. Spyros Giannelos & Alexandre Moreira & Dimitrios Papadaskalopoulos & Stefan Borozan & Danny Pudjianto & Ioannis Konstantelos & Mingyang Sun & Goran Strbac, 2023. "A Machine Learning Approach for Generating and Evaluating Forecasts on the Environmental Impact of the Buildings Sector," Energies, MDPI, vol. 16(6), pages 1-37, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Sołtysik & Karolina Mucha-Kuś & Jacek Kamiński, 2022. "The New Model of Energy Cluster Management and Functioning," Energies, MDPI, vol. 15(18), pages 1-18, September.
    2. Bouthaina El Barkouki & Mohamed Laamim & Abdelilah Rochd & Jae-won Chang & Aboubakr Benazzouz & Mohammed Ouassaid & Moses Kang & Hakgeun Jeong, 2023. "An Economic Dispatch for a Shared Energy Storage System Using MILP Optimization: A Case Study of a Moroccan Microgrid," Energies, MDPI, vol. 16(12), pages 1-19, June.
    3. Astitva Kumar & Mohammad Rizwan & Uma Nangia & Muhannad Alaraj, 2021. "Grey Wolf Optimizer-Based Array Reconfiguration to Enhance Power Production from Solar Photovoltaic Plants under Different Scenarios," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    4. Zheng Lu & Yunfei Chen & Qiaoqiao Fan, 2021. "Study on Feasibility of Photovoltaic Power to Grid Parity in China Based on LCOE," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    5. Jakub Jasiński & Mariusz Kozakiewicz & Maciej Sołtysik, 2021. "The Effectiveness of Energy Cooperatives Operating on the Capacity Market," Energies, MDPI, vol. 14(11), pages 1-20, May.
    6. Stanisław Mikulski & Andrzej Tomczewski, 2021. "Use of Energy Storage to Reduce Transmission Losses in Meshed Power Distribution Networks," Energies, MDPI, vol. 14(21), pages 1-20, November.
    7. Icaza-Alvarez, Daniel & Jurado, Francisco & Tostado-Véliz, Marcos & Arevalo, Paúl, 2022. "Decarbonization of the Galapagos Islands. Proposal to transform the energy system into 100% renewable by 2050," Renewable Energy, Elsevier, vol. 189(C), pages 199-220.
    8. Sgouridis, Sgouris & Ali, Mohamed & Sleptchenko, Andrei & Bouabid, Ali & Ospina, Gustavo, 2021. "Aluminum smelters in the energy transition: Optimal configuration and operation for renewable energy integration in high insolation regions," Renewable Energy, Elsevier, vol. 180(C), pages 937-953.
    9. Spyros Giannelos & Stefan Borozan & Marko Aunedi & Xi Zhang & Hossein Ameli & Danny Pudjianto & Ioannis Konstantelos & Goran Strbac, 2023. "Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids," Energies, MDPI, vol. 16(13), pages 1-15, June.
    10. Sławomir Skiba & Marianna Maruszczak, 2022. "The Impact of the COVID-19 Pandemic on the Decision to Use Solar Energy and Install Photovoltaic Panels in Households in the Years 2019–2021 within the Area of a Selected Polish Municipality," Energies, MDPI, vol. 15(19), pages 1-14, October.
    11. Chong Zhao & Siyu Jiang & Yu Xie & Longze Wang & Delong Zhang & Yiyi Ma & Yan Zhang & Meicheng Li, 2022. "Analysis of Fault and Protection Strategy of a Converter Station in MMC-HVDC System," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    12. Spyros Giannelos & Alexandre Moreira & Dimitrios Papadaskalopoulos & Stefan Borozan & Danny Pudjianto & Ioannis Konstantelos & Mingyang Sun & Goran Strbac, 2023. "A Machine Learning Approach for Generating and Evaluating Forecasts on the Environmental Impact of the Buildings Sector," Energies, MDPI, vol. 16(6), pages 1-37, March.
    13. Li, Ru & Tang, Bao-Jun & Yu, Biying & Liao, Hua & Zhang, Chen & Wei, Yi-Ming, 2022. "Cost-optimal operation strategy for integrating large scale of renewable energy in China’s power system: From a multi-regional perspective," Applied Energy, Elsevier, vol. 325(C).
    14. Robert Bauer & Dominik Schopf & Grégoire Klaus & Raimund Brotsack & Javier Valdes, 2022. "Energy Cell Simulation for Sector Coupling with Power-to-Methane: A Case Study in Lower Bavaria," Energies, MDPI, vol. 15(7), pages 1-22, April.
    15. Vitor Hugo Ferreira & Rubens Lucian da Silva Correa & Angelo Cesar Colombini & Márcio Zamboti Fortes & Flávio Luis de Mello & Fernando Carvalho Cid de Araujo & Natanael Rodrigues Pereira, 2021. "Big Data Analytics for Spatio-Temporal Service Orders Demand Forecasting in Electric Distribution Utilities," Energies, MDPI, vol. 14(23), pages 1-16, November.
    16. Ashish Gulagi & Manish Ram & Dmitrii Bogdanov & Sandeep Sarin & Theophilus Nii Odai Mensah & Christian Breyer, 2022. "The role of renewables for rapid transitioning of the power sector across states in India," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Piotr Olczak & Dominika Matuszewska, 2023. "Energy Storage Potential Needed at the National Grid Scale (Poland) in Order to Stabilize Daily Electricity Production from Fossil Fuels and Nuclear Power," Energies, MDPI, vol. 16(16), pages 1-11, August.
    18. Tadeusz Białoń & Roman Niestrój & Wojciech Skarka & Wojciech Korski, 2023. "HPPC Test Methodology Using LFP Battery Cell Identification Tests as an Example," Energies, MDPI, vol. 16(17), pages 1-21, August.
    19. Waqas Anjum & Abdul Rashid Husain & Junaidi Abdul Aziz & Syed Muhammad Fasih ur Rehman & Muhammad Paend Bakht & Hasan Alqaraghuli, 2022. "A Robust Dynamic Control Strategy for Standalone PV System under Variable Load and Environmental Conditions," Sustainability, MDPI, vol. 14(8), pages 1-27, April.
    20. Mateusz Andrychowicz, 2021. "The Impact of Energy Storage along with the Allocation of RES on the Reduction of Energy Costs Using MILP," Energies, MDPI, vol. 14(13), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7813-:d:684993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.