IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6905-d661440.html
   My bibliography  Save this article

Fault Diagnosis and Reconstruction of Wind Turbine Anemometer Based on RWSSA-AANN

Author

Listed:
  • Ling Zhou

    (Engineering Research Center of Hunan Province for the Mining and Utilization of Wind Turbines Operation Data, Hunan University of Science and Technology, Xiangtan 411201, China
    College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412000, China)

  • Qiancheng Zhao

    (Engineering Research Center of Hunan Province for the Mining and Utilization of Wind Turbines Operation Data, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Xian Wang

    (Engineering Research Center of Hunan Province for the Mining and Utilization of Wind Turbines Operation Data, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Anfeng Zhu

    (Engineering Research Center of Hunan Province for the Mining and Utilization of Wind Turbines Operation Data, Hunan University of Science and Technology, Xiangtan 411201, China)

Abstract

When the state of the wind turbine sensors, especially the anemometer, appears abnormal it will cause unnecessary wind loss and affect the correctness of other parameters of the whole system. It is very important to build a simple and accurate fault diagnosis model. In this paper, the model has been established based on the Random Walk Improved Sparrow Search Algorithm to optimize auto-associative neural network (RWSSA-AANN), and is used for fault diagnosis of wind turbine group anemometers. Using the cluster analysis, six wind turbines are determined to be used as a wind turbine group. The 20,000 sets of normal historical data have been used for training and simulating of the model, and the single and multiple fault states of the anemometer are simulated. Using this model to analyze the wind speed supervisory control and data acquisition system (SCADA) data of six wind turbines in a wind farm from 2013 to 2017, can effectively diagnose the fault state and reconstruct the fault data. A comparison of the results obtained using the model developed in this work has also been made with the corresponding results generated using AANN without optimization and AANN optimized by genetic algorithm. The comparison results indicate that the model has a higher accuracy and detection rate than AANN, genetic algorithm auto-associative neural network (GA-AANN), and principal component analysis (PCA).

Suggested Citation

  • Ling Zhou & Qiancheng Zhao & Xian Wang & Anfeng Zhu, 2021. "Fault Diagnosis and Reconstruction of Wind Turbine Anemometer Based on RWSSA-AANN," Energies, MDPI, vol. 14(21), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6905-:d:661440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6905/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6905/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan Pei & Zheng Qian & Bo Jing & Dahai Kang & Lizhong Zhang, 2018. "Data-Driven Method for Wind Turbine Yaw Angle Sensor Zero-Point Shifting Fault Detection," Energies, MDPI, vol. 11(3), pages 1-14, March.
    2. Yolanda Vidal & Francesc Pozo & Christian Tutivén, 2018. "Wind Turbine Multi-Fault Detection and Classification Based on SCADA Data," Energies, MDPI, vol. 11(11), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    2. Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    3. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    4. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    5. Davide Astolfi & Francesco Castellani & Matteo Becchetti & Andrea Lombardi & Ludovico Terzi, 2020. "Wind Turbine Systematic Yaw Error: Operation Data Analysis Techniques for Detecting It and Assessing Its Performance Impact," Energies, MDPI, vol. 13(9), pages 1-17, May.
    6. Davide Astolfi & Ravi Pandit & Linyue Gao & Jiarong Hong, 2022. "Individuation of Wind Turbine Systematic Yaw Error through SCADA Data," Energies, MDPI, vol. 15(21), pages 1-5, November.
    7. Pere Marti-Puig & Alejandro Blanco-M & Juan José Cárdenas & Jordi Cusidó & Jordi Solé-Casals, 2019. "Feature Selection Algorithms for Wind Turbine Failure Prediction," Energies, MDPI, vol. 12(3), pages 1-18, January.
    8. Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
    9. Yang, Jian & Wang, Li & Song, Dongran & Huang, Chaoneng & Huang, Liansheng & Wang, Junlei, 2022. "Incorporating environmental impacts into zero-point shifting diagnosis of wind turbines yaw angle," Energy, Elsevier, vol. 238(PA).
    10. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
    11. Dai, Juchuan & He, Tao & Li, Mimi & Long, Xin, 2021. "Performance study of multi-source driving yaw system for aiding yaw control of wind turbines," Renewable Energy, Elsevier, vol. 163(C), pages 154-171.
    12. Ruijun Guo & Guobin Zhang & Qian Zhang & Lei Zhou & Haicun Yu & Meng Lei & You Lv, 2021. "An Adaptive Early Fault Detection Model of Induced Draft Fans Based on Multivariate State Estimation Technique," Energies, MDPI, vol. 14(16), pages 1-18, August.
    13. Jing, Bo & Qian, Zheng & Pei, Yan & Zhang, Lizhong & Yang, Tingyi, 2020. "Improving wind turbine efficiency through detection and calibration of yaw misalignment," Renewable Energy, Elsevier, vol. 160(C), pages 1217-1227.
    14. Chen, Bin & Xie, Lei & Li, Yongzhan & Gao, Baocheng, 2020. "Acoustical damage detection of wind turbine yaw system using Bayesian network," Renewable Energy, Elsevier, vol. 160(C), pages 1364-1372.
    15. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
    16. Estefania Artigao & Sofia Koukoura & Andrés Honrubia-Escribano & James Carroll & Alasdair McDonald & Emilio Gómez-Lázaro, 2018. "Current Signature and Vibration Analyses to Diagnose an In-Service Wind Turbine Drive Train," Energies, MDPI, vol. 11(4), pages 1-18, April.
    17. Adriana Mar & Pedro Pereira & João F. Martins, 2019. "A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience," Energies, MDPI, vol. 12(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6905-:d:661440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.