IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6482-d652990.html
   My bibliography  Save this article

A Concept of Risk Prioritization in FMEA Analysis for Fluid Power Systems

Author

Listed:
  • Joanna Fabis-Domagala

    (Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawla II 37, 31-864 Cracow, Poland)

  • Mariusz Domagala

    (Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawla II 37, 31-864 Cracow, Poland)

  • Hassan Momeni

    (Department of Mechanical and Marine Engineering, Western Norway University of Applied Sciences, N5020 Bergen, Norway)

Abstract

FMEA analysis is a tool of quality improvement that has been widely used for decades. Its classical version prioritizes risk of failure by risk priority number (RPN). The RPN is a product of severity (S), occurrence (O), and detection (D), where all of the factors have equal levels of significance. This assumption is one of the most commonly criticized drawbacks, as it has given unreasonable results for real-world applications. The RPN can produce equal values for combinations of risk factors with different risk implications. Another issue is that of the uncertainties and subjectivities of information employed in FMEA analysis that may arise from lack of knowledge, experience, and employed linguistic terms. Many alternatives of risk assessment methods have been proposed to overcome the weaknesses of classical FMEA risk management in which we can distinguish methods of modification of RPN numbers of employing new tools. In this study, we propose a modification of the traditional RPN number. The main difference is that severity and occurrence are valued based on subfactors. The detection number remained unchanged. Additionally, the proposed method prioritizes risk in terms of implied risk to the systems by implementing functional failures (effects of potential failures). A typical fluid power system was used to illustrate the application of this method. The method showed the correct failure classification, which meets the industrial experience and other research results of failures of fluid power systems.

Suggested Citation

  • Joanna Fabis-Domagala & Mariusz Domagala & Hassan Momeni, 2021. "A Concept of Risk Prioritization in FMEA Analysis for Fluid Power Systems," Energies, MDPI, vol. 14(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6482-:d:652990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6482/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6482/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Chia-Hsun & Kontovas, Christos & Yu, Qing & Yang, Zaili, 2021. "Risk assessment of the operations of maritime autonomous surface ships," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. Yuan Guo & Ge Xiong & Liangcai Zeng & Qingfeng Li, 2021. "Modeling and Predictive Analysis of Small Internal Leakage of Hydraulic Cylinder Based on Neural Network," Energies, MDPI, vol. 14(9), pages 1-14, April.
    3. Joanna Fabis-Domagala & Mariusz Domagala & Hassan Momeni, 2021. "A Matrix FMEA Analysis of Variable Delivery Vane Pumps," Energies, MDPI, vol. 14(6), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Fabis-Domagala & Mariusz Domagala, 2022. "A Concept of Risk Prioritization in FMEA of Fluid Power Components," Energies, MDPI, vol. 15(17), pages 1-14, August.
    2. Ievgen Babeshko & Oleg Illiashenko & Vyacheslav Kharchenko & Kostiantyn Leontiev, 2022. "Towards Trustworthy Safety Assessment by Providing Expert and Tool-Based XMECA Techniques," Mathematics, MDPI, vol. 10(13), pages 1-25, June.
    3. Ferenc Bognár & Csaba Hegedűs, 2022. "Analysis and Consequences on Some Aggregation Functions of PRISM (Partial Risk Map) Risk Assessment Method," Mathematics, MDPI, vol. 10(5), pages 1-19, February.
    4. Israa Azzam & Keith Pate & Jose Garcia-Bravo & Farid Breidi, 2022. "Energy Savings in Hydraulic Hybrid Transmissions through Digital Hydraulics Technology," Energies, MDPI, vol. 15(4), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joanna Fabis-Domagala & Mariusz Domagala, 2022. "A Concept of Risk Prioritization in FMEA of Fluid Power Components," Energies, MDPI, vol. 15(17), pages 1-14, August.
    2. Zhang, Yan & Wang, Yu-Hao & Zhao, Xu & Tong, Rui-Peng, 2023. "Dynamic probabilistic risk assessment of emergency response for intelligent coal mining face system, case study: Gas overrun scenario," Resources Policy, Elsevier, vol. 85(PB).
    3. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Chelouati, Mohammed & Boussif, Abderraouf & Beugin, Julie & El Koursi, El-Miloudi, 2023. "Graphical safety assurance case using Goal Structuring Notation (GSN) — challenges, opportunities and a framework for autonomous trains," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Chuanqi Guo & Stein Haugen & Ingrid B Utne, 2023. "Risk assessment of collisions of an autonomous passenger ferry," Journal of Risk and Reliability, , vol. 237(2), pages 425-435, April.
    6. Cheng, Tingting & Utne, Ingrid Bouwer & Wu, Bing & Wu, Qing, 2023. "A novel system-theoretic approach for human-system collaboration safety: Case studies on two degrees of autonomy for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Fan, Shiqi & Yang, Zaili, 2023. "Towards objective human performance measurement for maritime safety: A new psychophysiological data-driven machine learning method," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    8. BahooToroody, Ahmad & Abaei, Mohammad Mahdi & Banda, Osiris Valdez & Kujala, Pentti & De Carlo, Filippo & Abbassi, Rouzbeh, 2022. "Prognostic health management of repairable ship systems through different autonomy degree; From current condition to fully autonomous ship," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    9. Nguyen, Son & Shu-Ling Chen, Peggy & Du, Yuquan, 2022. "Risk assessment of maritime container shipping blockchain-integrated systems: An analysis of multi-event scenarios," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    10. Johansen, Thomas & Blindheim, Simon & Torben, Tobias Rye & Utne, Ingrid Bouwer & Johansen, Tor Arne & Sørensen, Asgeir J., 2023. "Development and testing of a risk-based control system for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Li, Xue & Oh, Poong & Zhou, Yusheng & Yuen, Kum Fai, 2023. "Operational risk identification of maritime surface autonomous ship: A network analysis approach," Transport Policy, Elsevier, vol. 130(C), pages 1-14.
    12. Ademola Ishola & Christos A. Kontovas, 2022. "Managing Ship’s Ballast Water: A Feasibility Assessment of Mobile Port-Based Treatment," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    13. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Ryszard Dindorf & Jakub Takosoglu & Piotr Wos, 2021. "Advances in Fluid Power Systems," Energies, MDPI, vol. 14(24), pages 1-6, December.
    15. Grzegorz Filo, 2023. "Artificial Intelligence Methods in Hydraulic System Design," Energies, MDPI, vol. 16(8), pages 1-19, April.
    16. Guo, Yunlong & Jin, Yongxing & Hu, Shenping & Yang, Zaili & Xi, Yongtao & Han, Bing, 2023. "Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Fan, Cunlong & Montewka, Jakub & Zhang, Di, 2022. "A risk comparison framework for autonomous ships navigation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    18. Tsoumpris, Charalampos & Theotokatos, Gerasimos, 2023. "A decision-making approach for the health-aware energy management of ship hybrid power plants," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    19. Zyczkowski, Marcin & Szlapczynski, Rafal, 2023. "Collision risk-informed weather routing for sailboats," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    20. Dhalmahapatra, Krantiraditya & Garg, Ashish & Singh, Kritika & Xavier, Nirmal Francis & Maiti, J., 2022. "An integrated RFUCOM – RTOPSIS approach for failure modes and effects analysis: A case of manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6482-:d:652990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.