IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5256-d621317.html
   My bibliography  Save this article

Applying Criteria Equations in Studying the Energy Efficiency of Pump Systems

Author

Listed:
  • Gencho Popov

    (Department of Heat, Hydraulics and Environmental Engineering, University of Ruse “Angel Kanchev”, 8 Studentska Street, 7017 Ruse, Bulgaria)

  • Stanislaw Legutko

    (Faculty of Mechanical Engineering, Poznan University of Technology, 3 Piotrowo Street, 60-965 Poznan, Poland)

  • Kliment Klimentov

    (Department of Heat, Hydraulics and Environmental Engineering, University of Ruse “Angel Kanchev”, 8 Studentska Street, 7017 Ruse, Bulgaria)

  • Boris Kostov

    (Department of Heat, Hydraulics and Environmental Engineering, University of Ruse “Angel Kanchev”, 8 Studentska Street, 7017 Ruse, Bulgaria)

Abstract

This paper presents a method for evaluating the energy efficiency of pump systems used to transport fluids .It is mainly scientifically applied and engineering-applied in nature and aims to propose a new approach (method) to researchers in their study of the energy efficiency of such systems. By applying the well-known scientific method of Dimensional Analysis (Buckingham π-theorem), dimensionless complexes (π-criterions and their relevant equations, which are original (innovative) and are offered for the first time in the scientific literature), used in accomplishing an energy assessment and analysis of such systems, are obtained. The criterion ∏ 1 = e v /ρgD represents specific energy consumption in kWh/m 3 for a given pipe system with an exemplary diameter D. The criterion ∏ 2 = Q/[n(H p − H st )D 2 ] represents a generalized parameter which is characterized by the selected method of flow rate (Q) regulation for a pump system with given static head H st —by changing the speed of rotation (VFD, Variable Frequency Drive), by throttling, leading to an increase of the system hydraulic losses h v = (H p H st ) or by diverting a part of the flow, known as “by-pass”, where the pump operates with the required system head H p , but ensures higher flow rates, i.e., Q p > Q s . The flow rate criterion ∏ 3 = Q/(νD) characterizes the flow rate for a pipe system with an exemplary diameter D, used to transport a liquid with known viscosity ν. An example for applying these dimensionless complexes in accomplishing a quantitative evaluation of the energy efficiency of a given pump system is presented. A method for determining the main parameters forming these criterions, used to describe the different methods of flow rate regulation, has been developed. To demonstrate the application of this method, newly proposed by the authors, including obtaining the relevant criteria equations of the type ∏ 1 = f(∏ 2 , ∏ 3 ), a certain pump system was used. This original approach for studying pump systems used to transport fluids can be used both to accomplish an energy analysis of such systems as well as to solve for optimization or other engineering problems.

Suggested Citation

  • Gencho Popov & Stanislaw Legutko & Kliment Klimentov & Boris Kostov, 2021. "Applying Criteria Equations in Studying the Energy Efficiency of Pump Systems," Energies, MDPI, vol. 14(17), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5256-:d:621317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5256/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5256/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Natalia Naval & Jose M. Yusta, 2020. "Water-Energy Management for Demand Charges and Energy Cost Optimization of a Pumping Stations System under a Renewable Virtual Power Plant Model," Energies, MDPI, vol. 13(11), pages 1-21, June.
    2. Xiaoli Feng & Baoyun Qiu & Yongxing Wang, 2020. "Optimizing Parallel Pumping Station Operations in an Open-Channel Water Transfer System Using an Efficient Hybrid Algorithm," Energies, MDPI, vol. 13(18), pages 1-19, September.
    3. Jedrzej Bylka & Tomasz Mroz, 2019. "A Review of Energy Assessment Methodology for Water Supply Systems," Energies, MDPI, vol. 12(23), pages 1-55, December.
    4. Luigi Cimorelli & Carmine Covelli & Bruno Molino & Domenico Pianese, 2020. "Optimal Regulation of Pumping Station in Water Distribution Networks Using Constant and Variable Speed Pumps: A Technical and Economical Comparison," Energies, MDPI, vol. 13(10), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Przemysław Średziński & Martyna Świętochowska & Kamil Świętochowski & Joanna Gwoździej-Mazur, 2022. "Analysis of the Use of the PV Installation in the Power Supply of the Water Pumping Station," Energies, MDPI, vol. 15(24), pages 1-13, December.
    2. Dominika Kaczorowska & Jacek Rezmer & Michal Jasinski & Tomasz Sikorski & Vishnu Suresh & Zbigniew Leonowicz & Pawel Kostyla & Jaroslaw Szymanda & Przemyslaw Janik, 2020. "A Case Study on Battery Energy Storage System in a Virtual Power Plant: Defining Charging and Discharging Characteristics," Energies, MDPI, vol. 13(24), pages 1-22, December.
    3. Mehdi Dini & Mozhdeh Hemmati & Saeed Hashemi, 2022. "Optimal Operational Scheduling of Pumps to Improve the Performance of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 417-432, January.
    4. Zilei Zuo & Linwei Tan & Weidong Shi & Cheng Chen & Jincheng Ye & Egbo Munachi Francis, 2022. "Transient Characteristic Analysis of Variable Frequency Speed Regulation of Axial Flow Pump," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    5. Jedrzej Bylka & Tomasz Mróz, 2020. "Exergy Evaluation of a Water Distribution System," Energies, MDPI, vol. 13(23), pages 1-16, November.
    6. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Miguel Ángel Pardo & Héctor Fernández & Antonio Jodar-Abellan, 2020. "Converting a Water Pressurized Network in a Small Town into a Solar Power Water System," Energies, MDPI, vol. 13(15), pages 1-26, August.
    8. Dariusz Andraka & Wojciech Kruszyński & Jacek Tyniec & Joanna Gwoździej-Mazur & Bartosz Kaźmierczak, 2023. "Practical Aspects of the Energy Efficiency Evaluation of a Water Distribution Network Using Hydrodynamic Modeling—A Case Study," Energies, MDPI, vol. 16(8), pages 1-17, April.
    9. Xuetao Wang & Qianchuan Zhao & Yifan Wang, 2020. "A Distributed Optimization Method for Energy Saving of Parallel-Connected Pumps in HVAC Systems," Energies, MDPI, vol. 13(15), pages 1-24, July.
    10. Yitong Yin & Gang Lin & Dong Jiang & Jingying Fu & Donglin Dong, 2021. "Multi-Scenario Simulation of a Water–Energy Coupling System Based on System Dynamics: A Case Study of Ningbo City," Energies, MDPI, vol. 14(18), pages 1-22, September.
    11. Manickavel Baranidharan & Rassiah Raja Singh, 2022. "AI Energy Optimal Strategy on Variable Speed Drives for Multi-Parallel Aqua Pumping System," Energies, MDPI, vol. 15(12), pages 1-29, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5256-:d:621317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.