IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4826-d610379.html
   My bibliography  Save this article

Thermal Performance of V-Shaped and X-Shaped Ribs in Trapezoidal Cooling Channels

Author

Listed:
  • Wei-Jie Su

    (Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan)

  • Yao-Hsien Liu

    (Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan)

Abstract

Convective heat transfer enhancement using rib turbulators is effective for turbine blade internal cooling. Detailed heat transfer measurement of X-shaped ribs in a trapezoidal cooling channel was experimentally conducted using infrared thermography. The novel X-shaped ribs were designed by combining two V-shaped ribs, and more secondary flows generated by the X rib delivered higher heat transfer enhancement. The Reynolds numbers in this study were 10,000, 20,000, and 30,000. These ribs were installed on two opposite walls of a trapezoidal channel in a staggered arrangement. The rib pitch-to-height ratios were 10 and 20, and the rib height-to-hydraulic diameter ratio was 0.128. Results indicated that higher heat transfer distribution was observed in the vicinity of the shorter base in the trapezoidal channel. The full X-shaped ribs and the V-shaped ribs demonstrated the highest Nusselt number ratios among all the cases. Although full X-shaped ribs contributed to higher heat transfer improvement due to intensified secondary flows, they also caused significant pressure loss. Therefore, the cutback X-shaped ribs were proposed by removing a segment in the rib at either upstream or downstream region. Consequently, the upstream cutback X-shaped rib and the V-shaped rib produced the highest thermal performance in this trapezoidal channel.

Suggested Citation

  • Wei-Jie Su & Yao-Hsien Liu, 2021. "Thermal Performance of V-Shaped and X-Shaped Ribs in Trapezoidal Cooling Channels," Energies, MDPI, vol. 14(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4826-:d:610379
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4826/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4826/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuan-Tzu Huang & Yao-Hsien Liu, 2019. "Enhancement of Mist Flow Cooling by Using V-Shaped Broken Ribs," Energies, MDPI, vol. 12(19), pages 1-18, October.
    2. Lee, Dong Hyun & Rhee, Dong-Ho & Kim, Kyung Min & Cho, Hyung Hee & Moon, Hee Koo, 2009. "Detailed measurement of heat/mass transfer with continuous and multiple V-shaped ribs in rectangular channel," Energy, Elsevier, vol. 34(11), pages 1770-1778.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Dongxu & Zuo, Jianguo & Quan, Shenglin & Xu, Shiming & Gao, Hao, 2017. "Thermohydraulic performance of solar air heater with staggered multiple V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 127(C), pages 68-77.
    2. Shilong, Zhao & Yuxin, Fan, 2020. "Experimental and numerical study on the flame characteristics and cooling effectiveness of air-cooled flame holder," Energy, Elsevier, vol. 209(C).
    3. Song, Jiwoon & Lee, Keon Woo & Kim, Kyung Min & Cho, Hyung Hee, 2012. "Slot film cooling performance in combustor with flame holders," Energy, Elsevier, vol. 37(1), pages 533-539.
    4. Kuan-Tzu Huang & Yao-Hsien Liu, 2019. "Enhancement of Mist Flow Cooling by Using V-Shaped Broken Ribs," Energies, MDPI, vol. 12(19), pages 1-18, October.
    5. Jin, Dongxu & Quan, Shenglin & Zuo, Jianguo & Xu, Shiming, 2019. "Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs," Renewable Energy, Elsevier, vol. 134(C), pages 78-88.
    6. Arnut Phila & Chinaruk Thianpong & Smith Eiamsa-ard, 2019. "Influence of Geometric Parameters of Alternate Axis Twisted Baffles on the Local Heat Transfer Distribution and Pressure Drop in a Rectangular Channel Using a Transient Liquid Crystal Technique," Energies, MDPI, vol. 12(12), pages 1-25, June.
    7. Jin, Dongxu & Zhang, Manman & Wang, Ping & Xu, Shasha, 2015. "Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 89(C), pages 178-190.
    8. Hwang, Sang Dong & Kwon, Hyun Goo & Cho, Hyung Hee, 2010. "Local heat transfer and thermal performance on periodically dimple-protrusion patterned walls for compact heat exchangers," Energy, Elsevier, vol. 35(12), pages 5357-5364.
    9. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    10. Kim, Kyung Min & Kim, Beom Seok & Lee, Dong Hyun & Moon, Hokyu & Cho, Hyung Hee, 2010. "Optimal design of transverse ribs in tubes for thermal performance enhancement," Energy, Elsevier, vol. 35(6), pages 2400-2406.
    11. Park, Jun Su & Park, Sehjin & Kim, Kyung Min & Choi, Beom Seok & Cho, Hyung Hee, 2013. "Effect of the thermal insulation on generator and micro gas turbine system," Energy, Elsevier, vol. 59(C), pages 581-589.
    12. Alam, Tabish & Saini, R.P. & Saini, J.S., 2014. "Use of turbulators for heat transfer augmentation in an air duct – A review," Renewable Energy, Elsevier, vol. 62(C), pages 689-715.
    13. Chamoli, Sunil & Thakur, N.S. & Saini, J.S., 2012. "A review of turbulence promoters used in solar thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3154-3175.
    14. Bhushan, Brij & Singh, Ranjit, 2010. "A review on methodology of artificial roughness used in duct of solar air heaters," Energy, Elsevier, vol. 35(1), pages 202-212.
    15. Kim, Kyung Min & Jeon, Yun Heung & Yun, Namgeon & Lee, Dong Hyun & Cho, Hyung Hee, 2011. "Thermo-mechanical life prediction for material lifetime improvement of an internal cooling system in a combustion liner," Energy, Elsevier, vol. 36(2), pages 942-949.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4826-:d:610379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.