IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4695-d607235.html
   My bibliography  Save this article

A Novel Faulty Phase Selection Method for Single-Phase-to-Ground Fault in Distribution System Based on Transient Current Similarity Measurement

Author

Listed:
  • Yaojing Tang

    (Wenzhou Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd., Wenzhou 325000, China)

  • Yongle Chang

    (Department of Electrical Engineering, School of Automation, Wuhan University of Technology, Wuhan 430070, China)

  • Jinrui Tang

    (Department of Electrical Engineering, School of Automation, Wuhan University of Technology, Wuhan 430070, China)

  • Bin Xu

    (Wenzhou Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd., Wenzhou 325000, China)

  • Mingkang Ye

    (Wenzhou Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd., Wenzhou 325000, China)

  • Hongbo Yang

    (Ji’an Power Supply Company, State Grid Jiangxi Electric Power Co., Ltd., Ji’an 343000, China)

Abstract

In modern electrical power distribution systems, the effective operation of inverter-based arc suppression devices relies on the accuracy of faulty phase selection. In the traditional methods of faulty phase selection for single-phase-to-ground faults (SPGs), power frequency-based amplitude and phase characteristics are used to identify the faulty phase. In the field, when a high-resistance SPG occurs in the system, traditional methods are difficult for accurately identifying the faulty phase because of the weak fault components and complicated process. A novel realizable and effective method of faulty phase selection based on transient current similarity measurements is presented when SPGs occur in resonantly grounded distribution systems in this paper. An optimized Hausdorff distance matrix (M OHD ) is proposed and constructed by the transient currents of three phases’ similarity measurements within a certain time window of our method. This M OHD is used to select the sampling time window adaptively, which allows the proposed method to be applied to any scale of distribution systems. Firstly, when a SPG occurs, the expressions for the transient phase current mutation in the faulty and sound phases are analyzed. Then, the sampling process is segmented into several selection units (SUs) to form the M OHD -based faulty phase selection method. Additionally, the Hausdorff distance algorithm (HD) is used to calculate the waveform similarities of the transient phase current mutation among the three phases to form the HD-based faulty phase selection method. Finally, a practical resonant grounded distribution system is modeled in PSCAD/EMTDC, and the effectiveness and performance of the proposed method is compared and verified under different fault resistances, fault inception angles, system topologies, sampling time windows and rates of data missing.

Suggested Citation

  • Yaojing Tang & Yongle Chang & Jinrui Tang & Bin Xu & Mingkang Ye & Hongbo Yang, 2021. "A Novel Faulty Phase Selection Method for Single-Phase-to-Ground Fault in Distribution System Based on Transient Current Similarity Measurement," Energies, MDPI, vol. 14(15), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4695-:d:607235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
    2. Dumitru Toader & Marian Greconici & Daniela Vesa & Maria Vintan & Claudiu Solea, 2021. "Analysis of the Influence of the Insulation Parameters of Medium Voltage Electrical Networks and of the Petersen Coil on the Single-Phase-to-Ground Fault Current," Energies, MDPI, vol. 14(5), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dumitru Toader & Maria Vintan & Claudiu Solea & Daniela Vesa & Marian Greconici, 2021. "Analysis of the Possibilities of Selective Detection of a Single Line-to-Ground Fault in a Medium Voltage Network with Isolated Neutral," Energies, MDPI, vol. 14(21), pages 1-19, October.
    2. Yu He & Xinhui Zhang & Wenhao Wu & Jun Zhang & Wenyuan Bai & Aiyu Guo & Yu Chen, 2022. "Faulty Line Selection Method Based on Comprehensive Dynamic Time Warping Distance in a Flexible Grounding System," Energies, MDPI, vol. 15(2), pages 1-16, January.
    3. Bartosz Olejnik & Beata Zięba, 2022. "Improving the Efficiency of Earth Fault Detection by Fault Current Passage Indicators in Medium-Voltage Compensated Overhead Networks," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dumitru Toader & Maria Vintan & Claudiu Solea & Daniela Vesa & Marian Greconici, 2021. "Analysis of the Possibilities of Selective Detection of a Single Line-to-Ground Fault in a Medium Voltage Network with Isolated Neutral," Energies, MDPI, vol. 14(21), pages 1-19, October.
    2. Krzysztof Kuliński & Adam Heyduk, 2024. "Ground Fault in Medium-Voltage Power Networks with an Isolated Neutral Point: Spectral and Wavelet Analysis of Selected Cases in an Example Industrial Network Modeled in the ATP-EMTP Package," Energies, MDPI, vol. 17(7), pages 1-25, March.
    3. Mojgan Hojabri & Severin Nowak & Antonios Papaemmanouil, 2023. "ML-Based Intermittent Fault Detection, Classification, and Branch Identification in a Distribution Network," Energies, MDPI, vol. 16(16), pages 1-15, August.
    4. Rizeakos, V. & Bachoumis, A. & Andriopoulos, N. & Birbas, M. & Birbas, A., 2023. "Deep learning-based application for fault location identification and type classification in active distribution grids," Applied Energy, Elsevier, vol. 338(C).
    5. Sun, Chenhao & Zhou, Zhuoyu & Zeng, Xiangjun & Li, Zewen & Wang, Yuanyuan & Deng, Feng, 2022. "A multi-model-integration-based prediction methodology for the spatiotemporal distribution of vulnerabilities in integrated energy systems under the multi-type, imbalanced, and dependent input data sc," Applied Energy, Elsevier, vol. 320(C).
    6. Dumitru Toader & Maria Vintan, 2023. "Mathematical Models of the Phase Voltages of High-, Medium- and Low-Voltage Busbars in a Substation during a Phase-to-Ground Fault on High-Voltage Busbars," Mathematics, MDPI, vol. 11(13), pages 1-30, July.
    7. Hamed Rezapour & Sadegh Jamali & Alireza Bahmanyar, 2023. "Review on Artificial Intelligence-Based Fault Location Methods in Power Distribution Networks," Energies, MDPI, vol. 16(12), pages 1-18, June.
    8. Moamin A. Mahmoud & Naziffa Raha Md Nasir & Mathuri Gurunathan & Preveena Raj & Salama A. Mostafa, 2021. "The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review," Energies, MDPI, vol. 14(16), pages 1-27, August.
    9. Denis Ustinov & Aleksander Nazarychev & Denis Pelenev & Kirill Babyr & Andrey Pugachev, 2023. "Investigation of the Effect of Current Protections in Conditions of Single-Phase Ground Fault through Transient Resistance in the Electrical Networks of Mining Enterprises," Energies, MDPI, vol. 16(9), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4695-:d:607235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.