IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2350-d355502.html
   My bibliography  Save this article

Microgrid Protection Strategy Based on the Autocorrelation of Current Envelopes Using the Squaring and Low-Pass Filtering Method

Author

Listed:
  • Shazia Baloch

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Saeed Zaman Jamali

    (Electrical Engineering Department, Balochistan University of Engineering and Technology, Khuzdar 89100, Pakistan)

  • Khawaja Khalid Mehmood

    (U.S.-Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology, Islamabad 44100, Pakistan)

  • Syed Basit Ali Bukhari

    (U.S.-Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology, Islamabad 44100, Pakistan)

  • Muhammad Saeed Uz Zaman

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Arif Hussain

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

  • Chul-Hwan Kim

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea)

Abstract

To resolve the protection issues caused by high penetration of distributed energy resources, this paper proposes an efficient protection scheme for microgrids based on the autocorrelation of three-phase current envelopes. The proposed strategy uses a squaring and low-pass filtering approach for evaluating the envelope of the current signal. Then, the variance of the autocorrelation function is used to extract the hidden information of the distorted envelope to detect the fault signatures in the microgrid. Furthermore, the reactive power is used for determining the fault direction. The performance of the proposed protection scheme was verified on a standard medium-voltage microgrid by performing simulations in the MATLAB/Simulink environment (Version: R2017b). The proposed scheme was shown to be easy to implement and have good performance under looped and radial configuration for both grid-connected and islanded operation modes. The simulation results showed that the scheme could not only detect, locate, classify, and isolate various types of short-circuit faults effectively but also provide backup protection in case of primary protection failure.

Suggested Citation

  • Shazia Baloch & Saeed Zaman Jamali & Khawaja Khalid Mehmood & Syed Basit Ali Bukhari & Muhammad Saeed Uz Zaman & Arif Hussain & Chul-Hwan Kim, 2020. "Microgrid Protection Strategy Based on the Autocorrelation of Current Envelopes Using the Squaring and Low-Pass Filtering Method," Energies, MDPI, vol. 13(9), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2350-:d:355502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mirsaeidi, Sohrab & Said, Dalila Mat & Mustafa, Mohammad Wazir & Habibuddin, Mohammad Hafiz & Ghaffari, Kimia, 2016. "Fault location and isolation in micro-grids using a digital central protection unit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faisal Mumtaz & Kashif Imran & Abdullah Abusorrah & Syed Basit Ali Bukhari, 2022. "Harmonic Content-Based Protection Method for Microgrids via 1-Dimensional Recursive Median Filtering Algorithm," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    2. Hyun Shin & Sang Heon Chae & Eel-Hwan Kim, 2020. "Design of Microgrid Protection Schemes Using PSCAD/EMTDC and ETAP Programs," Energies, MDPI, vol. 13(21), pages 1-19, November.
    3. Musfira Mehmood & Syed Basit Ali Bukhari & Abdullah Altamimi & Zafar A. Khan & Syed Ali Abbas Kazmi & Muhammad Yousif & Dong Ryeol Shin, 2022. "Microgrid Protection Using Magneto-Resistive Sensors and Superimposed Reactive Energy," Sustainability, MDPI, vol. 15(1), pages 1-28, December.
    4. Faisal Mumtaz & Haseeb Hassan Khan & Amad Zafar & Muhammad Umair Ali & Kashif Imran, 2022. "A State-Observer-Based Protection Scheme for AC Microgrids with Recurrent Neural Network Assistance," Energies, MDPI, vol. 15(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    2. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    3. Syed Basit Ali Bukhari & Abdul Wadood & Tahir Khurshaid & Khawaja Khalid Mehmood & Sang Bong Rhee & Ki-Chai Kim, 2022. "Empirical Wavelet Transform-Based Intelligent Protection Scheme for Microgrids," Energies, MDPI, vol. 15(21), pages 1-17, October.
    4. Jia, Ke & Gu, Chenjie & Li, Lun & Xuan, Zhengwen & Bi, Tianshu & Thomas, David, 2018. "Sparse voltage amplitude measurement based fault location in large-scale photovoltaic power plants," Applied Energy, Elsevier, vol. 211(C), pages 568-581.
    5. Hashim A. Al Hassan & Andrew Reiman & Gregory F. Reed & Zhi-Hong Mao & Brandon M. Grainger, 2018. "Model-Based Fault Detection of Inverter-Based Microgrids and a Mathematical Framework to Analyze and Avoid Nuisance Tripping and Blinding Scenarios," Energies, MDPI, vol. 11(8), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2350-:d:355502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.