IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6647-d463173.html
   My bibliography  Save this article

Heat Transfer Coefficient Determination during FC-72 Flow in a Minichannel Heat Sink Using the Trefftz Functions and ADINA Software

Author

Listed:
  • Magdalena Piasecka

    (Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland)

  • Beata Maciejewska

    (Faculty of Management and Computer Modelling, Kielce University of Technology, 25-314 Kielce, Poland)

  • Paweł Łabędzki

    (Faculty of Management and Computer Modelling, Kielce University of Technology, 25-314 Kielce, Poland)

Abstract

This work focuses on subcooled boiling heat transfer during flow in a minichannel heat sink with three or five minichannels of 1 mm depth. The heated element for FC-72 flowing along the minichannels was a thin foil of which temperature on the outer surface was measured due to the infrared thermography. The test section was oriented vertically or horizontally. A steady state heat transfer process and a laminar, incompressible flow of the fluid in a central minichannel were assumed. The heat transfer problem was described by the energy equations with an appropriate system of boundary conditions. Several mathematical methods were applied to solve the heat transfer problem with the Robin condition to determine the local heat transfer coefficients at the fluid/heated foil interface. Besides the 1D approach as a simple analytical method, a more sophisticated 2D approach was proposed with solutions by the Trefftz functions and ADINA software. Finite element method (FEM) calculations were conducted to find the temperature field in the flowing fluid and in the heated wall. The results were illustrated by graphs of local heated foil temperature and transfer coefficients as a function of the distance from the minichannel inlet. Temperature distributions in the heater and the fluid obtained from the FEM computations carried out by ADINA software were also shown. Similar values of the heat transfer coefficient were obtained in both the FEM calculations and the 1D approach. Example boiling curves indicating nucleation hysteresis are shown and discussed.

Suggested Citation

  • Magdalena Piasecka & Beata Maciejewska & Paweł Łabędzki, 2020. "Heat Transfer Coefficient Determination during FC-72 Flow in a Minichannel Heat Sink Using the Trefftz Functions and ADINA Software," Energies, MDPI, vol. 13(24), pages 1-25, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6647-:d:463173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6647/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6647/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gabriela Rafałko & Iwona Zaborowska & Hubert Grzybowski & Romuald Mosdorf, 2020. "Boiling Synchronization in Two Parallel Minichannels—Image Analysis," Energies, MDPI, vol. 13(6), pages 1-9, March.
    2. Mirosław Grabowski & Sylwia Hożejowska & Anna Pawińska & Mieczysław E. Poniewski & Jacek Wernik, 2018. "Heat Transfer Coefficient Identification in Mini-Channel Flow Boiling with the Hybrid Picard–Trefftz Method," Energies, MDPI, vol. 11(8), pages 1-13, August.
    3. Mirosław Grabowski & Sylwia Hożejowska & Beata Maciejewska & Krzysztof Płaczkowski & Mieczysław E. Poniewski, 2020. "Application of the 2-D Trefftz Method for Identification of Flow Boiling Heat Transfer Coefficient in a Rectangular MiniChannel," Energies, MDPI, vol. 13(15), pages 1-14, August.
    4. Sylwia Hożejowska & Magdalena Piasecka, 2020. "Numerical Solution of Axisymmetric Inverse Heat Conduction Problem by the Trefftz Method," Energies, MDPI, vol. 13(3), pages 1-14, February.
    5. Marek Jaszczur & Anna Młynarczykowska & Luana Demurtas, 2020. "Effect of Impeller Design on Power Characteristics and Newtonian Fluids Mixing Efficiency in a Mechanically Agitated Vessel at Low Reynolds Numbers," Energies, MDPI, vol. 13(3), pages 1-19, February.
    6. Piotr Duda & Mariusz Konieczny, 2020. "Experimental Verification of the Inverse Method of the Heat Transfer Coefficient Calculation," Energies, MDPI, vol. 13(6), pages 1-16, March.
    7. Jan Wajs & Michał Bajor & Dariusz Mikielewicz, 2019. "Thermal-Hydraulic Studies on the Shell-and-Tube Heat Exchanger with Minijets," Energies, MDPI, vol. 12(17), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magdalena Piasecka & Sylwia Hożejowska & Anna Pawińska & Dariusz Strąk, 2022. "Heat Transfer Analysis of a Co-Current Heat Exchanger with Two Rectangular Mini-Channels," Energies, MDPI, vol. 15(4), pages 1-19, February.
    2. Magdalena Piasecka, 2023. "Heat and Mass Transfer Issues in Mini-Gaps," Energies, MDPI, vol. 16(16), pages 1-6, August.
    3. Eloy Hontoria & Alejandro López-Belchí & Nolberto Munier & Francisco Vera-García, 2021. "A MCDM Methodology to Determine the Most Critical Variables in the Pressure Drop and Heat Transfer in Minichannels," Energies, MDPI, vol. 14(8), pages 1-13, April.
    4. Magdalena Piasecka & Beata Maciejewska & Artur Piasecki, 2023. "Heat Transfer Calculations during Flow in Mini-Channels with Estimation of Temperature Uncertainty Measurements," Energies, MDPI, vol. 16(3), pages 1-19, January.
    5. Varun Kumar & K. Chandan & K. V. Nagaraja & M. V. Reddy, 2022. "Heat Conduction with Krylov Subspace Method Using FEniCSx," Energies, MDPI, vol. 15(21), pages 1-16, October.
    6. Magdalena Piasecka & Kinga Strąk, 2021. "Characteristics of Refrigerant Boiling Heat Transfer in Rectangular Mini-Channels during Various Flow Orientations," Energies, MDPI, vol. 14(16), pages 1-30, August.
    7. Piotr Duda, 2023. "Heat Transfer Coefficient Distribution—A Review of Calculation Methods," Energies, MDPI, vol. 16(9), pages 1-21, April.
    8. Magdalena Piasecka & Sylwia Hożejowska & Beata Maciejewska & Anna Pawińska, 2021. "Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink," Energies, MDPI, vol. 14(7), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdalena Piasecka & Sylwia Hożejowska & Beata Maciejewska & Anna Pawińska, 2021. "Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink," Energies, MDPI, vol. 14(7), pages 1-24, March.
    2. Krzysztof Płaczkowski & Mirosław Grabowski & Mieczysław E. Poniewski, 2021. "Novel Twofold Use of Photographic Technique for Simultaneous Flow Boiling Image Recording and Void Fraction Computation in a Mini-Channel Experiment," Energies, MDPI, vol. 14(15), pages 1-21, July.
    3. Magdalena Piasecka & Sylwia Hożejowska & Anna Pawińska & Dariusz Strąk, 2022. "Heat Transfer Analysis of a Co-Current Heat Exchanger with Two Rectangular Mini-Channels," Energies, MDPI, vol. 15(4), pages 1-19, February.
    4. Natalia Rydalina & Elena Antonova & Irina Akhmetova & Svetlana Ilyashenko & Olga Afanaseva & Vincenzo Bianco & Alexander Fedyukhin, 2020. "Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems," Energies, MDPI, vol. 13(22), pages 1-13, November.
    5. Magda Joachimiak, 2021. "Analysis of Thermodynamic Parameter Variability in a Chamber of a Furnace for Thermo-Chemical Treatment," Energies, MDPI, vol. 14(10), pages 1-18, May.
    6. Sun Kyoung Kim, 2021. "Influence of Errors in Known Constants and Boundary Conditions on Solutions of Inverse Heat Conduction Problem," Energies, MDPI, vol. 14(11), pages 1-20, June.
    7. Piotr Duda & Mariusz Konieczny, 2020. "Experimental Verification of the Inverse Method of the Heat Transfer Coefficient Calculation," Energies, MDPI, vol. 13(6), pages 1-16, March.
    8. Eloy Hontoria & Alejandro López-Belchí & Nolberto Munier & Francisco Vera-García, 2021. "A MCDM Methodology to Determine the Most Critical Variables in the Pressure Drop and Heat Transfer in Minichannels," Energies, MDPI, vol. 14(8), pages 1-13, April.
    9. Xiuli Liu & Hua Chen & Xiaolin Wang & Gholamreza Kefayati, 2020. "Study on Surface Condensate Water Removal and Heat Transfer Performance of a Minichannel Heat Exchanger," Energies, MDPI, vol. 13(5), pages 1-17, March.
    10. Dominika Babička Fialová & Zdeněk Jegla, 2021. "Experimentally Verified Flow Distribution Model for a Composite Modelling System," Energies, MDPI, vol. 14(6), pages 1-24, March.
    11. Sangare, Diakaridia & Bostyn, Stéphane & Moscosa-Santillan, Mario & Gökalp, Iskender, 2021. "Hydrodynamics, heat transfer and kinetics reaction of CFD modeling of a batch stirred reactor under hydrothermal carbonization conditions," Energy, Elsevier, vol. 219(C).
    12. Piotr Duda, 2023. "Heat Transfer Coefficient Distribution—A Review of Calculation Methods," Energies, MDPI, vol. 16(9), pages 1-21, April.
    13. Mohsen Tadi & Miloje Radenkovic, 2021. "Non-Iterative Solution Methods for Cauchy Problems for Laplace and Helmholtz Equation in Annulus Domain," Mathematics, MDPI, vol. 9(3), pages 1-14, January.
    14. Sylwia Hożejowska & Magdalena Piasecka, 2020. "Numerical Solution of Axisymmetric Inverse Heat Conduction Problem by the Trefftz Method," Energies, MDPI, vol. 13(3), pages 1-14, February.
    15. Ivan CK Tam & Brian Agnew, 2020. "Thermal Systems—An Overview," Energies, MDPI, vol. 14(1), pages 1-3, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6647-:d:463173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.