IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5996-d446253.html
   My bibliography  Save this article

Black Start Restoration of Islanded Droop-Controlled Microgrids

Author

Listed:
  • Ogbonnaya Bassey

    (Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA)

  • Karen L. Butler-Purry

    (Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA)

Abstract

The electricity grid faces the possibility of outages due to extreme weather events, cyber-attack, and unexpected events. When these unwanted events occur, it is desired that electricity be restored as soon as possible to meet the power demands of critical loads. The microgrid approach to power restoration holds a lot of promise, since microgrids can operate in island mode. This paper presents a novel sequential restoration methodology for microgrid black start. The microgrid architecture considered is assumed to be operating in multi-master mode. The master distributed generators (DGs) are coordinated to operate together through droop control. Several operational constraints are formulated and linearized to realize a mixed-integer linear programming (MILP) problem. The method is studied on an islanded microgrid based on a modified IEEE 13 node test feeder. Detailed transient simulation in PSCAD was used to verify the accuracy of the restoration methodology. The developed restoration method can maximize the energy restored while ensuring good voltage and frequency regulation, and ensure that power scheduling mismatch is shared in the desired proportion.

Suggested Citation

  • Ogbonnaya Bassey & Karen L. Butler-Purry, 2020. "Black Start Restoration of Islanded Droop-Controlled Microgrids," Energies, MDPI, vol. 13(22), pages 1-28, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5996-:d:446253
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5996/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5996/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaur, Amandeep & Kaushal, Jitender & Basak, Prasenjit, 2016. "A review on microgrid central controller," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 338-345.
    2. Gilani, Mohammad Amin & Kazemi, Ahad & Ghasemi, Mostafa, 2020. "Distribution system resilience enhancement by microgrid formation considering distributed energy resources," Energy, Elsevier, vol. 191(C).
    3. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ogbonnaya Bassey & Karen L. Butler-Purry, 2022. "Islanded Microgrid Restoration Studies with Graph-Based Analysis," Energies, MDPI, vol. 15(19), pages 1-18, September.
    2. Wenguo Li & Mingmin Zhang & Yaqi Deng, 2022. "Consensus-Based Distributed Secondary Frequency Control Method for AC Microgrid Using ADRC Technique," Energies, MDPI, vol. 15(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Liangyu & Han, Yang & Zalhaf, Amr S. & Zhou, Siyu & Yang, Ping & Wang, Congling & Huang, Tao, 2024. "Resilience enhancement of active distribution networks under extreme disaster scenarios: A comprehensive overview of fault location strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Shi, Wenlong & Liang, Hao & Bittner, Myrna, 2024. "Dynamic microgrid formation for resilient distribution systems considering large-scale deployment of mobile energy resources," Applied Energy, Elsevier, vol. 362(C).
    3. Mbungu, Nsilulu T. & Ismail, Ali A. & AlShabi, Mohammad & Bansal, Ramesh C. & Elnady, A. & Hamid, Abdul Kadir, 2023. "Control and estimation techniques applied to smart microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Zhao, Shihao & Li, Kang & Yin, Mingjia & Yu, James & Yang, Zhile & Li, Yihuan, 2024. "Transportable energy storage assisted post-disaster restoration of distribution networks with renewable generations," Energy, Elsevier, vol. 295(C).
    5. Dwivedi, Divyanshi & Mitikiri, Sagar Babu & Babu, K. Victor Sam Moses & Yemula, Pradeep Kumar & Srinivas, Vedantham Lakshmi & Chakraborty, Pratyush & Pal, Mayukha, 2024. "Technological advancements and innovations in enhancing resilience of electrical distribution systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 46(C).
    6. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    9. Soheil Mohseni & Alan C. Brent & Daniel Burmester, 2020. "Community Resilience-Oriented Optimal Micro-Grid Capacity Expansion Planning: The Case of Totarabank Eco-Village, New Zealand," Energies, MDPI, vol. 13(15), pages 1-29, August.
    10. Huang, Chunjun & Zong, Yi & You, Shi & Træholt, Chresten & Zheng, Yi & Wang, Jiawei & Zheng, Zixuan & Xiao, Xianyong, 2023. "Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities," Applied Energy, Elsevier, vol. 335(C).
    11. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    12. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    13. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    14. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    15. Bintoudi, Angelina D. & Demoulias, Charis, 2023. "Optimal isolated microgrid topology design for resilient applications," Applied Energy, Elsevier, vol. 338(C).
    16. Andrzej Szromba, 2020. "The Unified Power Quality Conditioner Control Method Based on the Equivalent Conductance Signals of the Compensated Load," Energies, MDPI, vol. 13(23), pages 1-27, November.
    17. Pan, Zhongmei & Jenkins, Nick & Wu, Jianzhong, 2025. "Black start from renewable energy resources: Review and a case study of Great Britain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    18. Younesi, Abdollah & Shayeghi, Hossein & Safari, Amin & Siano, Pierluigi, 2020. "Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation," Energy, Elsevier, vol. 207(C).
    19. Muthusamy Thirumalai & Raju Hariharan & Thangaraj Yuvaraj & Natarajan Prabaharan, 2024. "Optimizing Distribution System Resilience in Extreme Weather Using Prosumer-Centric Microgrids with Integrated Distributed Energy Resources and Battery Electric Vehicles," Sustainability, MDPI, vol. 16(6), pages 1-41, March.
    20. Mohamed G. Moh Almihat & Josiah L. Munda, 2025. "The Role of Smart Grid Technologies in Urban and Sustainable Energy Planning," Energies, MDPI, vol. 18(7), pages 1-30, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5996-:d:446253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.