IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5013-d418305.html
   My bibliography  Save this article

Grey Wolf Optimizer-Based Predictive Torque Control for Electric Buses Applications

Author

Listed:
  • Ali Djerioui

    (IREENA Laboratory, University of Nantes, 44600 Nantes, France
    LGE, Laboratoire de Génie Electrique, University of M’sila, M’sila 28000, Algeria)

  • Azeddine Houari

    (IREENA Laboratory, University of Nantes, 44600 Nantes, France)

  • Mohamed Machmoum

    (IREENA Laboratory, University of Nantes, 44600 Nantes, France)

  • Malek Ghanes

    (LS2N, Ecole Centrale de Nantes, UMR CNRS 6004, 44321 Nantes, France)

Abstract

This paper proposes an improved Predictive Torque Control (PTC) of a PMSM based on the Grey Wolf Optimizer (GWO) for smooth torque operation in Electric Bus applications (EBs). The embedded GWO is used to resolve the torque tracking tasks with minimal oscillations in running at the low speed of PMSM drives. The new PTC algorithm can successfully ensure the smooth time evolution of the torque and the speed. The design methodology is detailed and the provided experimental results show that the proposed PTC-GWO can be implemented in real-time on embedded hardware, offering high effectiveness in both steady and transient states of the PMSM drives, even at low-speed range.

Suggested Citation

  • Ali Djerioui & Azeddine Houari & Mohamed Machmoum & Malek Ghanes, 2020. "Grey Wolf Optimizer-Based Predictive Torque Control for Electric Buses Applications," Energies, MDPI, vol. 13(19), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5013-:d:418305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sultana, U. & Khairuddin, Azhar B. & Mokhtar, A.S. & Zareen, N. & Sultana, Beenish, 2016. "Grey wolf optimizer based placement and sizing of multiple distributed generation in the distribution system," Energy, Elsevier, vol. 111(C), pages 525-536.
    2. Susanne Rothgang & Matthias Rogge & Jan Becker & Dirk Uwe Sauer, 2015. "Battery Design for Successful Electrification in Public Transport," Energies, MDPI, vol. 8(7), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malika Fodil & Ali Djerioui & Mohamed Ladjal & Abdelhakim Saim & Fouad Berrabah & Hemza Mekki & Samir Zeghlache & Azeddine Houari & Mohamed Fouad Benkhoris, 2023. "Optimization of PI Controller Parameters by GWO Algorithm for Five-Phase Asynchronous Motor," Energies, MDPI, vol. 16(10), pages 1-14, May.
    2. Kalaiselvi Aramugam & Hazlee Azil Illias & Yern Chee Ching & Mohd Syukri Ali & Mohamad Zul Hilmey Makmud, 2023. "Optimal Design of Corona Ring for 132 kV Insulator at High Voltage Transmission Lines Based on Optimisation Techniques," Energies, MDPI, vol. 16(2), pages 1-18, January.
    3. Mohammad Alali & Zagros Shahooei & Maryam Bahramipanah, 2021. "Resiliency-Oriented Optimization of Critical Parameters in Multi Inverter-Fed Distributed Generation Systems," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    4. Taha Selim Ustun, 2022. "Power Systems Imitate Nature for Improved Performance Use of Nature-Inspired Optimization Techniques," Energies, MDPI, vol. 15(17), pages 1-2, August.
    5. Khoudir Kakouche & Adel Oubelaid & Smail Mezani & Djamila Rekioua & Toufik Rekioua, 2023. "Different Control Techniques of Permanent Magnet Synchronous Motor with Fuzzy Logic for Electric Vehicles: Analysis, Modelling, and Comparison," Energies, MDPI, vol. 16(7), pages 1-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    2. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    3. Bandara, T.G. Thusitha Asela & Viera, J.C. & González, M., 2022. "The next generation of fast charging methods for Lithium-ion batteries: The natural current-absorption methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Der-Fa Chen & Yi-Cheng Shih & Shih-Cheng Li & Chin-Tung Chen & Jung-Chu Ting, 2020. "Permanent-Magnet SLM Drive System Using AMRRSPNNB Control System with DGWO," Energies, MDPI, vol. 13(11), pages 1-25, June.
    5. Mirna Fouad Abd El-salam & Eman Beshr & Magdy B. Eteiba, 2018. "A New Hybrid Technique for Minimizing Power Losses in a Distribution System by Optimal Sizing and Siting of Distributed Generators with Network Reconfiguration," Energies, MDPI, vol. 11(12), pages 1-26, November.
    6. Bahman Shabani & Manu Biju, 2015. "Theoretical Modelling Methods for Thermal Management of Batteries," Energies, MDPI, vol. 8(9), pages 1-25, September.
    7. Philipp Glücker & Klaus Kivekäs & Jari Vepsäläinen & Panagiotis Mouratidis & Maximilian Schneider & Stephan Rinderknecht & Kari Tammi, 2021. "Prolongation of Battery Lifetime for Electric Buses through Flywheel Integration," Energies, MDPI, vol. 14(4), pages 1-19, February.
    8. Sistig, Hubert Maximilian & Sauer, Dirk Uwe, 2023. "Metaheuristic for the integrated electric vehicle and crew scheduling problem," Applied Energy, Elsevier, vol. 339(C).
    9. Das, Bikash & Mukherjee, V. & Das, Debapriya, 2019. "Optimum DG placement for known power injection from utility/substation by a novel zero bus load flow approach," Energy, Elsevier, vol. 175(C), pages 228-249.
    10. Dong Zhang & GM Shafiullah & Choton Kanti Das & Kok Wai Wong, 2023. "Optimal Allocation of Battery Energy Storage Systems to Enhance System Performance and Reliability in Unbalanced Distribution Networks," Energies, MDPI, vol. 16(20), pages 1-35, October.
    11. Saeed Behzadpoor & Iraj Faraji Davoudkhani & Almoataz Youssef Abdelaziz & Zong Woo Geem & Junhee Hong, 2022. "Power System Stability Enhancement Using Robust FACTS-Based Stabilizer Designed by a Hybrid Optimization Algorithm," Energies, MDPI, vol. 15(22), pages 1-30, November.
    12. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2020. "Comprehensive energy modeling methodology for battery electric buses," Energy, Elsevier, vol. 207(C).
    13. Bayat, A. & Bagheri, A., 2019. "Optimal active and reactive power allocation in distribution networks using a novel heuristic approach," Applied Energy, Elsevier, vol. 233, pages 71-85.
    14. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    15. Panda, Mitali & Nayak, Yogesh Kumar, 2022. "Impact analysis of renewable energy Distributed Generation in deregulated electricity markets: A Context of Transmission Congestion Problem," Energy, Elsevier, vol. 254(PC).
    16. Soheil Younesi & Bahman Ahmadi & Oguzhan Ceylan & Aydogan Ozdemir, 2022. "Optimum Parallel Processing Schemes to Improve the Computation Speed for Renewable Energy Allocation and Sizing Problems," Energies, MDPI, vol. 15(24), pages 1-18, December.
    17. Ahmed M. Nassef & Mohammad Ali Abdelkareem & Hussein M. Maghrabie & Ahmad Baroutaji, 2023. "Review of Metaheuristic Optimization Algorithms for Power Systems Problems," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    18. Rastgou, Abdollah & Moshtagh, Jamal & Bahramara, Salah, 2018. "Improved harmony search algorithm for electrical distribution network expansion planning in the presence of distributed generators," Energy, Elsevier, vol. 151(C), pages 178-202.
    19. Wang, Hong-Jiang & Pan, Jeng-Shyang & Nguyen, Trong-The & Weng, Shaowei, 2022. "Distribution network reconfiguration with distributed generation based on parallel slime mould algorithm," Energy, Elsevier, vol. 244(PB).
    20. Valentini, M.P. & Conti, V. & Orchi, S., 2022. "BEST: A software to verify the feasibility of urban bus line electrification," Research in Transportation Economics, Elsevier, vol. 92(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5013-:d:418305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.