IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3944-d393218.html
   My bibliography  Save this article

A Novel Statistical Learning-Based Methodology for Measuring the Goodness of Energy Profiles of Applications Executing on Multicore Computing Platforms

Author

Listed:
  • Muhammad Fahad

    (School of Computer Science, University College Dublin, Belfield, Dublin-4, Ireland)

  • Arsalan Shahid

    (School of Computer Science, University College Dublin, Belfield, Dublin-4, Ireland)

  • Ravi Reddy Manumachu

    (School of Computer Science, University College Dublin, Belfield, Dublin-4, Ireland)

  • Alexey Lastovetsky

    (School of Computer Science, University College Dublin, Belfield, Dublin-4, Ireland)

Abstract

Accurate energy profiles are essential to the optimization of parallel applications for energy through workload distribution. Since there are many model-based methods available for efficient construction of energy profiles, we need an approach to measure the goodness of the profiles compared with the ground-truth profile, which is usually built by a time-consuming but reliable method. Correlation coefficient and relative error are two such popular statistical approaches, but they assume that profiles be linear or at least very smooth functions of workload size. This assumption does not hold true in the multicore era. Due to the complex shapes of energy profiles of applications on modern multicore platforms, the statistical methods can often rank inaccurate energy profiles higher than more accurate ones and employing such profiles in the energy optimization loop of an application leads to significant energy losses (up to 54% in our case). In this work, we present the first method specifically designed for goodness measurement of energy profiles. First, it analyses the underlying energy consumption trend of each energy profile and removes the profiles that exhibit a trend different from that of the ground truth. Then, it ranks the remaining energy profiles using the Euclidean distances as a metric. We demonstrate that the proposed method is more accurate than the statistical approaches and can save a significant amount of energy.

Suggested Citation

  • Muhammad Fahad & Arsalan Shahid & Ravi Reddy Manumachu & Alexey Lastovetsky, 2020. "A Novel Statistical Learning-Based Methodology for Measuring the Goodness of Energy Profiles of Applications Executing on Multicore Computing Platforms," Energies, MDPI, vol. 13(15), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3944-:d:393218
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3944/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3944/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Félix Iglesias & Wolfgang Kastner, 2013. "Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns," Energies, MDPI, vol. 6(2), pages 1-19, January.
    2. Domenico Piccolo, 1990. "A Distance Measure For Classifying Arima Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(2), pages 153-164, March.
    3. Muhammad Fahad & Arsalan Shahid & Ravi Reddy Manumachu & Alexey Lastovetsky, 2019. "A Comparative Study of Methods for Measurement of Energy of Computing," Energies, MDPI, vol. 12(11), pages 1-42, June.
    4. Anders S. G. Andrae & Tomas Edler, 2015. "On Global Electricity Usage of Communication Technology: Trends to 2030," Challenges, MDPI, vol. 6(1), pages 1-41, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Małgorzata Poniatowska-Jaksch, 2021. "Energy Consumption in Central and Eastern Europe (CEE) Households in the Platform Economics," Energies, MDPI, vol. 14(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Małgorzata Poniatowska-Jaksch, 2021. "Energy Consumption in Central and Eastern Europe (CEE) Households in the Platform Economics," Energies, MDPI, vol. 14(4), pages 1-22, February.
    2. Lucio Palazzo & Riccardo Ievoli, 2023. "Detecting Regional Differences in Italian Health Services during Five COVID-19 Waves," Stats, MDPI, vol. 6(2), pages 1-13, April.
    3. Alberto Ortega & Abel Miguel Cano-Delgado & Beatriz Prieto & Jesús González, 2023. "Design of a Standard and Programmatically Accessible Interface for Smart Meters to Allow Monitoring Automation of the Energy Consumed by the Execution of Computer Software," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    4. Steffen Dalsgaard, 2022. "Can IT Resolve the Climate Crisis? Sketching the Role of an Anthropology of Digital Technology," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    5. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238007, International Telecommunications Society (ITS).
    6. Bishnu Nepal & Motoi Yamaha & Hiroya Sahashi & Aya Yokoe, 2019. "Analysis of Building Electricity Use Pattern Using K-Means Clustering Algorithm by Determination of Better Initial Centroids and Number of Clusters," Energies, MDPI, vol. 12(12), pages 1-17, June.
    7. Anders S. G. Andrae & Mengjun Xia & Jianli Zhang & Xiaoming Tang, 2016. "Practical Eco-Design and Eco-Innovation of Consumer Electronics—the Case of Mobile Phones," Challenges, MDPI, vol. 7(1), pages 1-19, February.
    8. Muhammad Fahad & Arsalan Shahid & Ravi Reddy Manumachu & Alexey Lastovetsky, 2019. "A Comparative Study of Methods for Measurement of Energy of Computing," Energies, MDPI, vol. 12(11), pages 1-42, June.
    9. Tilman Santarius & Johanna Pohl & Steffen Lange, 2020. "Digitalization and the Decoupling Debate: Can ICT Help to Reduce Environmental Impacts While the Economy Keeps Growing?," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    10. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie, 2022. "An introduction to stochastic bin packing-based server consolidation with conflicts," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 296-331, July.
    11. Anders S. G. Andrae & Mikko Samuli Vaija, 2017. "Precision of a Streamlined Life Cycle Assessment Approach Used in Eco-Rating of Mobile Phones," Challenges, MDPI, vol. 8(2), pages 1-24, August.
    12. Salil Bharany & Sandeep Sharma & Osamah Ibrahim Khalaf & Ghaida Muttashar Abdulsahib & Abeer S. Al Humaimeedy & Theyazn H. H. Aldhyani & Mashael Maashi & Hasan Alkahtani, 2022. "A Systematic Survey on Energy-Efficient Techniques in Sustainable Cloud Computing," Sustainability, MDPI, vol. 14(10), pages 1-89, May.
    13. Sovacool, Benjamin K. & Martiskainen, Mari & Furszyfer Del Rio, Dylan D., 2021. "Knowledge, energy sustainability, and vulnerability in the demographics of smart home technology diffusion," Energy Policy, Elsevier, vol. 153(C).
    14. Kosuke Sasakura & Takeshi Aoki & Masayoshi Komatsu & Takeshi Watanabe, 2020. "A Temperature-Risk and Energy-Saving Evaluation Model for Supporting Energy-Saving Measures for Data Center Server Rooms," Energies, MDPI, vol. 13(19), pages 1-22, October.
    15. Paloma Taltavull de La Paz, 2021. "Predicting housing prices. A long term housing price path for Spanish regions," LARES lares-2021-4dra, Latin American Real Estate Society (LARES).
    16. Csereklyei, Zsuzsanna & Thurner, Paul W. & Langer, Johannes & Küchenhoff, Helmut, 2017. "Energy paths in the European Union: A model-based clustering approach," Energy Economics, Elsevier, vol. 65(C), pages 442-457.
    17. E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    18. Markovič, Rene & Gosak, Marko & Grubelnik, Vladimir & Marhl, Marko & Virtič, Peter, 2019. "Data-driven classification of residential energy consumption patterns by means of functional connectivity networks," Applied Energy, Elsevier, vol. 242(C), pages 506-515.
    19. Xiaoxi Zhang & Machiko Shinozuka & Yuriko Tanaka & Yuko Kanamori & Toshihiko Masui, 2022. "How ICT can contribute to realize a sustainable society in the future: a CGE approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5614-5640, April.
    20. Rishan Adha & Cheng-Yih Hong & Somya Agrawal & Li-Hua Li, 2023. "ICT, carbon emissions, climate change, and energy demand nexus: The potential benefit of digitalization in Taiwan," Energy & Environment, , vol. 34(5), pages 1619-1638, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3944-:d:393218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.