IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2941-d368876.html
   My bibliography  Save this article

Porous Cores in Small Thermoacoustic Devices for Building Applications

Author

Listed:
  • Fabio Auriemma

    (Department of Mechanical and Industrial Engineering, Tallinn University of Technology—TalTech, 19086 Tallinn, Estonia)

  • Elio Di Giulio

    (Department of Industrial Engineering, University of Naples Federico II, 80125 Naples, Italy)

  • Marialuisa Napolitano

    (Department of Industrial Engineering, University of Naples Federico II, 80125 Naples, Italy)

  • Raffaele Dragonetti

    (Department of Industrial Engineering, University of Naples Federico II, 80125 Naples, Italy)

Abstract

The thermoacoustic behavior of different typologies of porous cores is studied in this paper with the goal of finding the most suitable solution for small thermoacoustic devices, including solar driven air coolers and generators, which can be used in future buildings. Cores provided with circular pores, with rectangular slits and with arrays of parallel cylindrical pins are investigated. For the type of applications in focus, the main design constraints are represented by the reduced amount of the input heat power and the size limitations of the device. In this paper, a numerical procedure has been implemented to assess the behavior of the different core typologies. For a fixed input heat power, the maximum acoustic power delivered by each core is computed and the corresponding engine configuration (length of the resonator and position of the core) is provided. It has been found that cores with parallel pins provide the largest amount of acoustic power with the smallest resonator length. This conclusion has been confirmed by experiments where additive manufactured cores have been tested in a small, light-driven, thermoacoustic prime mover.

Suggested Citation

  • Fabio Auriemma & Elio Di Giulio & Marialuisa Napolitano & Raffaele Dragonetti, 2020. "Porous Cores in Small Thermoacoustic Devices for Building Applications," Energies, MDPI, vol. 13(11), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2941-:d:368876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boe-Shong Hong & Tsu-Yu Lin, 2015. "System Identification and Resonant Control of Thermoacoustic Engines for Robust Solar Power," Energies, MDPI, vol. 8(5), pages 1-22, May.
    2. Antonio Piccolo & Alessio Sapienza & Cecilia Guglielmino, 2019. "Convection Heat Transfer Coefficients in Thermoacoustic Heat Exchangers: An Experimental Investigation," Energies, MDPI, vol. 12(23), pages 1-10, November.
    3. Napolitano, Marialuisa & Romano, Rosario & Dragonetti, Raffaele, 2017. "Open-cell foams for thermoacoustic applications," Energy, Elsevier, vol. 138(C), pages 147-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umar Nawaz Bhatti & Salem Bashmal & Sikandar Khan & Rached Ben-Mansour, 2020. "Numerical Modeling and Performance Evaluation of Standing Wave Thermoacoustic Refrigerators with a Multi-Layered Stack," Energies, MDPI, vol. 13(17), pages 1-25, August.
    2. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Jakub Kajurek & Artur Rusowicz, 2020. "Experimental Investigation on the Thermoacoustic Effect in Easily Accessible Porous Materials," Energies, MDPI, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umar Nawaz Bhatti & Salem Bashmal & Sikandar Khan & Rached Ben-Mansour, 2020. "Numerical Modeling and Performance Evaluation of Standing Wave Thermoacoustic Refrigerators with a Multi-Layered Stack," Energies, MDPI, vol. 13(17), pages 1-25, August.
    2. Sindhu Preetham Burugupally & Leland Weiss, 2018. "Power Generation via Small Length Scale Thermo-Mechanical Systems: Current Status and Challenges, a Review," Energies, MDPI, vol. 11(9), pages 1-22, August.
    3. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Wang, Kai & Dong, Huzi & Wang, Long & Zhao, Wei & Wang, Yanhai & Guo, Haijun & Zang, Jie & Fan, Long & Zhang, Xiaolei, 2023. "Temperature-induced micropore structure alteration of raw coal and its implications for optimizing the degassing temperature in pore characterization," Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2941-:d:368876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.