IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1314-d220362.html
   My bibliography  Save this article

The Influence of Permanent Magnet Material Properties on Generator Rotor Design

Author

Listed:
  • Petter Eklund

    (Division of Electricity, Uppsala University, SE-751 05 Uppsala, Sweden)

  • Sandra Eriksson

    (Division of Electricity, Uppsala University, SE-751 05 Uppsala, Sweden)

Abstract

Due to the price and supply insecurities for rare earth metal-based permanent magnet (PM) materials, a search for new PM materials is ongoing. The properties of a new PM material are not known yet, but a span of likely parameters can be studied. This paper presents an investigation on how the remanence and recoil permeability of a PM material affect its usefulness in a low speed, multi-pole, and PM synchronous generator. Demagnetisation is also considered. The investigation is carried out by constrained optimisation of three different rotor topologies for maximum torque production for different PM material parameters and a fixed PM maximum energy. The rotor topologies used are surface mounted PM rotor, spoke type PM rotor and an interior PM rotor with radially magnetised PMs. The three different rotor topologies have their best performance for different kinds of materials. The spoke type PM rotor is the best at utilising low remanence materials as long as they are sufficiently resistant to demagnetisation. The surface mounted PM rotor works best with very demagnetisation resistant PM materials with a high remanence, while the radial interior PM rotor is preferable for high remanence materials with low demagnetisation resistance.

Suggested Citation

  • Petter Eklund & Sandra Eriksson, 2019. "The Influence of Permanent Magnet Material Properties on Generator Rotor Design," Energies, MDPI, vol. 12(7), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1314-:d:220362
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1314/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1314/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcel Torrent & José Ignacio Perat & José Antonio Jiménez, 2018. "Permanent Magnet Synchronous Motor with Different Rotor Structures for Traction Motor in High Speed Trains," Energies, MDPI, vol. 11(6), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liyan Guo & Zhongyuan Hao & Jiaqi Xu & Huimin Wang & Xinmin Li & Shuang Wu, 2022. "Design and Analysis of Modulated Magnetic Pole for Dual Three-Phase Surface-Mounted Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 15(13), pages 1-19, June.
    2. Reza Jafari & Pedram Asef & Mohammad Ardebili & Mohammad Mahdi Derakhshani, 2022. "Linear Permanent Magnet Vernier Generators for Wave Energy Applications: Analysis, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    3. Sandra Eriksson, 2019. "Permanent Magnet Synchronous Machines," Energies, MDPI, vol. 12(14), pages 1-5, July.
    4. Jonathan Sjölund & Sandra Eriksson, 2021. "Effect of Pole Shoe Design on Inclination Angle of Different Magnetic Fields in Permanent Magnet Machines," Energies, MDPI, vol. 14(9), pages 1-15, April.
    5. Sofia Kontos & Anar Ibrayeva & Jennifer Leijon & Gustav Mörée & Anna E. Frost & Linus Schönström & Klas Gunnarsson & Peter Svedlindh & Mats Leijon & Sandra Eriksson, 2020. "An Overview of MnAl Permanent Magnets with a Study on Their Potential in Electrical Machines," Energies, MDPI, vol. 13(21), pages 1-14, October.
    6. Amina Bensalah & Georges Barakat & Yacine Amara, 2022. "Electrical Generators for Large Wind Turbine: Trends and Challenges," Energies, MDPI, vol. 15(18), pages 1-36, September.
    7. Anna Przybył & Piotr Gębara & Roman Gozdur & Krzysztof Chwastek, 2022. "Modeling of Magnetic Properties of Rare-Earth Hard Magnets," Energies, MDPI, vol. 15(21), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klemen Drobnič & Lovrenc Gašparin & Rastko Fišer, 2019. "Fast and Accurate Model of Interior Permanent-Magnet Machine for Dynamic Characterization," Energies, MDPI, vol. 12(5), pages 1-20, February.
    2. Jemma J. Makrygiorgou & Antonio T. Alexandridis, 2019. "Power Electronic Control Design for Stable EV Motor and Battery Operation during a Route," Energies, MDPI, vol. 12(10), pages 1-21, May.
    3. Kang Wang & Ruituo Huai & Zhihao Yu & Xiaoyang Zhang & Fengjuan Li & Luwei Zhang, 2019. "Comparison Study of Induction Motor Models Considering Iron Loss for Electric Drives," Energies, MDPI, vol. 12(3), pages 1-13, February.
    4. Sajjad Ahmadi & Thierry Lubin & Abolfazl Vahedi & Nasser Taghavi, 2021. "Sensitivity-Based Optimization of Interior Permanent Magnet Synchronous Motor for Torque Characteristic Enhancement," Energies, MDPI, vol. 14(8), pages 1-15, April.
    5. Hassan Mohammadi Pirouz & Amin Hajizadeh, 2020. "A Highly Reliable Propulsion System with Onboard Uninterruptible Power Supply for Train Application: Topology and Control," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    6. Youguang Guo & Lin Liu & Xin Ba & Haiyan Lu & Gang Lei & Wenliang Yin & Jianguo Zhu, 2022. "Measurement and Modeling of Magnetic Materials under 3D Vectorial Magnetization for Electrical Machine Design and Analysis," Energies, MDPI, vol. 16(1), pages 1-11, December.
    7. Shun Li & Xinxiu Zhou, 2018. "Sensorless Energy Conservation Control for Permanent Magnet Synchronous Motors Based on a Novel Hybrid Observer Applied in Coal Conveyer Systems," Energies, MDPI, vol. 11(10), pages 1-23, September.
    8. Massimo Caruso & Antonino Oscar Di Tommaso & Giuseppe Lisciandrello & Rosa Anna Mastromauro & Rosario Miceli & Claudio Nevoloso & Ciro Spataro & Marco Trapanese, 2020. "A General and Accurate Measurement Procedure for the Detection of Power Losses Variations in Permanent Magnet Synchronous Motor Drives," Energies, MDPI, vol. 13(21), pages 1-19, November.
    9. Francesco Piraino & Petronilla Fragiacomo, 2020. "Design of an Equivalent Consumption Minimization Strategy-Based Control in Relation to the Passenger Number for a Fuel Cell Tram Propulsion," Energies, MDPI, vol. 13(15), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1314-:d:220362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.