IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p540-d204451.html
   My bibliography  Save this article

Numerical Comparison of Thermohydraulic Performance and Fluid-Induced Vibrations for STHXs with Segmental, Helical, and Novel Clamping Antivibration Baffles

Author

Listed:
  • S.M.A. Naqvi

    (Key Laboratory of Thermo-Fluid Science and Engineering, MOE, Xi’an Jiaotong University, Xi’an 710049, China)

  • Qiuwang Wang

    (Key Laboratory of Thermo-Fluid Science and Engineering, MOE, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

The most extensively used heat exchanger in numerous research fields and industrial processes is the shell and tube heat exchanger. The selection of the baffle plays a vital role to regulate and increase the thermohydraulic performance and also to decrease fluid-induced vibrations due to shell side flow. 3-D computational fluid dynamics (CFD) and fluid-structure interaction (FSI) have been done to analyze the pressure drop, heat transfer coefficient, vortex shedding, and tube deformation due to induced vibrations among the recently developed clamping antivibration baffles with square twisted tubes, helical baffles with cylindrical tubes, and conventional segmental baffles with cylindrical tubes at different shell side flow rates by using commercial software ANSYS. Complete heat exchangers are modeled for numerical comparison; the thermohydraulic performance of the numerical model shows the suitable agreement by validating it with already published results and Esso method for single segmental baffles. It is then used to compare the performance of the same heat exchangers with CBSTT and HBCT. Thermohydraulic performance of CBSTT-STHX is better than SGCT-STHX. The heat transfer coefficient of heat exchangers with tube-to-baffle-hole clearance is higher and there is a reduction in the pressure drop compared to the results of STHXs without tube-to-baffle-hole clearance. The deformation in the tubes and vortex-induced vibrations are minimum in STHX with CBSTT than in STHXs with HBCT and SGCT.

Suggested Citation

  • S.M.A. Naqvi & Qiuwang Wang, 2019. "Numerical Comparison of Thermohydraulic Performance and Fluid-Induced Vibrations for STHXs with Segmental, Helical, and Novel Clamping Antivibration Baffles," Energies, MDPI, vol. 12(3), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:540-:d:204451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/540/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/540/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markowski, Mariusz & Trafczynski, Marian & Urbaniec, Krzysztof, 2013. "Identification of the influence of fouling on the heat recovery in a network of shell and tube heat exchangers," Applied Energy, Elsevier, vol. 102(C), pages 755-764.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Ming & Bulatov, Igor & Smith, Robin, 2016. "Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation," Applied Energy, Elsevier, vol. 161(C), pages 611-626.
    2. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    3. Tremblay, Veronique & Zmeureanu, Radu, 2014. "Benchmarking models for the ongoing commissioning of heat recovery process in a central heating and cooling plant," Energy, Elsevier, vol. 70(C), pages 194-203.
    4. Vazquez, Luis & Blanco, Jesús María & Ramis, Rolando & Peña, Francisco & Diaz, David, 2015. "Robust methodology for steady state measurements estimation based framework for a reliable long term thermal power plant operation performance monitoring," Energy, Elsevier, vol. 93(P1), pages 923-944.
    5. Trafczynski, Marian & Markowski, Mariusz & Urbaniec, Krzysztof, 2023. "Energy saving and pollution reduction through optimal scheduling of cleaning actions in a heat exchanger network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Guelpa, Elisa & Verda, Vittorio, 2020. "Automatic fouling detection in district heating substations: Methodology and tests," Applied Energy, Elsevier, vol. 258(C).
    7. Diaz-Bejarano, E. & Behranvand, E. & Coletti, F. & Mozdianfard, M.R. & Macchietto, S., 2017. "Organic and inorganic fouling in heat exchangers – Industrial case study: Analysis of fouling state," Applied Energy, Elsevier, vol. 206(C), pages 1250-1266.
    8. Wang, Yufei & Wei, Ying & Feng, Xiao & Chu, Khim Hoong, 2014. "Synthesis of heat exchanger networks featuring batch streams," Applied Energy, Elsevier, vol. 114(C), pages 30-44.
    9. Soualhi, Moncef & El Koujok, Mohamed & Nguyen, Khanh T.P. & Medjaher, Kamal & Ragab, Ahmed & Ghezzaz, Hakim & Amazouz, Mouloud & Ouali, Mohamed-Salah, 2021. "Adaptive prognostics in a controlled energy conversion process based on long- and short-term predictors," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:540-:d:204451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.