IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4687-d295949.html
   My bibliography  Save this article

Densification and Fuel Properties of Onion Husks

Author

Listed:
  • Sławomir Obidziński

    (Faculty of Civil and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-531 Białystok, Poland)

  • Magdalena Dołżyńska

    (Faculty of Civil and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-531 Białystok, Poland)

  • Małgorzata Kowczyk-Sadowy

    (Faculty of Civil and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-531 Białystok, Poland)

  • Krzysztof Jadwisieńczak

    (Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11 Street, 10-719 Olsztyn, Poland)

  • Paweł Sobczak

    (Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka28 Street, 20-612 Lublin, Poland)

Abstract

The aim of the described research was to assess the suitability of onion husk waste as a material for the production of solid fuels in the form of granules (pellets). Due to the low susceptibility to thickening of onion husks, the addition of a binder in the form of potato pulp was used (waste with a high starch content). Both wastes were subjected to elemental analysis determining the content of C, H, N, S, Cl, and their HHV (High Heating Value) and LHV (Low Heating Value). Mixtures containing the addition of 10%, 15%, and 20% potato pulp to onion husks were subjected to granulation in a “flat matrix–thickening rollers” operating system at three rotational speeds of the granulator matrix a 170, 220, and 270 rpm. The influence of the potato pulp addition and matrix rotational speed on the quality of the obtained pellet was determined. The highest quality product was combusted in a low-power boiler with a retort grate, and the content of CO, CO 2 , SO 2 , NO, and HCl in the exhaust gas was determined. The highest quality granulate was obtained from a mixture containing 10% potato pulp, which was compacted at 170 rpm matrix, where the kinetic strength was 99.50% and the density was about 650 kg·m −3 . The results of the combustion emissions from onion husk granules exceed the requirements of the EcoDesign Directive with the greatest being the case of CO.

Suggested Citation

  • Sławomir Obidziński & Magdalena Dołżyńska & Małgorzata Kowczyk-Sadowy & Krzysztof Jadwisieńczak & Paweł Sobczak, 2019. "Densification and Fuel Properties of Onion Husks," Energies, MDPI, vol. 12(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4687-:d:295949
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4687/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4687/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magdalena Dołżyńska & Sławomir Obidziński & Małgorzata Kowczyk-Sadowy & Małgorzata Krasowska, 2019. "Densification and Combustion of Cherry Stones," Energies, MDPI, vol. 12(16), pages 1-15, August.
    2. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    3. Obidziński, Sławomir & Piekut, Jolanta & Dec, Dorota, 2016. "The influence of potato pulp content on the properties of pellets from buckwheat hulls," Renewable Energy, Elsevier, vol. 87(P1), pages 289-297.
    4. Mladenović, Milica & Paprika, Milijana & Marinković, Ana, 2018. "Denitrification techniques for biomass combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3350-3364.
    5. Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Wojciech Gołębiowski & Małgorzata Szczepanik, 2018. "Chemical Characteristics of Biomass Ashes," Energies, MDPI, vol. 11(11), pages 1-15, October.
    6. Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.
    7. Ewa Szatyłowicz & Iwona Skoczko, 2019. "Evaluation of the PAH Content in Soot from Solid Fuels Combustion in Low Power Boilers," Energies, MDPI, vol. 12(22), pages 1-13, November.
    8. Rabaçal, M. & Fernandes, U. & Costa, M., 2013. "Combustion and emission characteristics of a domestic boiler fired with pellets of pine, industrial wood wastes and peach stones," Renewable Energy, Elsevier, vol. 51(C), pages 220-226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karol Kupryaniuk & Agnieszka Wójtowicz & Jakub Mazurkiewicz & Tomasz Słowik & Arkadiusz Matwijczuk, 2021. "The Influence of the Pressure-Thermal Agglomeration Methods of Corn Bran on Their Selected Physicochemical Properties and Biogas Efficiency," Energies, MDPI, vol. 14(21), pages 1-26, October.
    2. Lalisa Duguma & Esther Kamwilu & Peter A Minang & Judith Nzyoka & Kennedy Muthee, 2020. "Ecosystem-Based Approaches to Bioenergy and the Need for Regenerative Supply Options for Africa," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    3. Suliman Ali Al-Khateeb & Abid Hussain & Stefan Lange & Mohammad M. Almutari & Felicitas Schneider, 2021. "Battling Food Losses and Waste in Saudi Arabia: Mobilizing Regional Efforts and Blending Indigenous Knowledge to Address Global Food Security Challenges," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    4. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    5. Sławomir Obidziński & Michał Puchlik & Magdalena Dołżyńska, 2020. "Pelletization of Post-Harvest Tobacco Waste and Investigation of Flue Gas Emissions from Pellet Combustion," Energies, MDPI, vol. 13(22), pages 1-17, November.
    6. Krzysztof Mudryk & Marcin Jewiarz & Marek Wróbel & Marcin Niemiec & Arkadiusz Dyjakon, 2021. "Evaluation of Urban Tree Leaf Biomass-Potential, Physico-Mechanical and Chemical Parameters of Raw Material and Solid Biofuel," Energies, MDPI, vol. 14(4), pages 1-14, February.
    7. Magdalena Dołżyńska & Sławomir Obidziński & Jolanta Piekut & Güray Yildiz, 2020. "The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions," Energies, MDPI, vol. 13(19), pages 1-19, October.
    8. Andrzej Rostocki & Hilal Unyay & Katarzyna Ławińska & Andrzej Obraniak, 2022. "Granulates Based on Bio and Industrial Waste and Biochar in a Sustainable Economy," Energies, MDPI, vol. 16(1), pages 1-18, December.
    9. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    10. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    2. Magdalena Dołżyńska & Sławomir Obidziński & Jolanta Piekut & Güray Yildiz, 2020. "The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions," Energies, MDPI, vol. 13(19), pages 1-19, October.
    3. Grzegorz Maj & Joanna Szyszlak-Bargłowicz & Grzegorz Zając & Tomasz Słowik & Paweł Krzaczek & Wiesław Piekarski, 2019. "Energy and Emission Characteristics of Biowaste from the Corn Grain Drying Process," Energies, MDPI, vol. 12(22), pages 1-20, November.
    4. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    6. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Ozgen, S. & Cernuschi, S. & Caserini, S., 2021. "An overview of nitrogen oxides emissions from biomass combustion for domestic heat production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Sławomir Obidziński & Michał Puchlik & Magdalena Dołżyńska, 2020. "Pelletization of Post-Harvest Tobacco Waste and Investigation of Flue Gas Emissions from Pellet Combustion," Energies, MDPI, vol. 13(22), pages 1-17, November.
    9. Richter, Joseph P. & Weisberger, Joshua M. & Mollendorf, Joseph C. & DesJardin, Paul E., 2017. "Emissions from a domestic two-stage wood-fired hydronic heater: Effects of non-homogeneous fuel decomposition," Renewable Energy, Elsevier, vol. 112(C), pages 187-196.
    10. Richter, Joseph P. & Weisberger, Joshua M. & Bojko, Brian T. & Mollendorf, Joseph C. & DesJardin, Paul E., 2019. "Numerical modeling of homogeneous gas and heterogeneous char combustion for a wood-fired hydronic heater," Renewable Energy, Elsevier, vol. 131(C), pages 890-899.
    11. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    12. Fournel, S. & Palacios, J.H. & Morissette, R. & Villeneuve, J. & Godbout, S. & Heitz, M. & Savoie, P., 2015. "Influence of biomass properties on technical and environmental performance of a multi-fuel boiler during on-farm combustion of energy crops," Applied Energy, Elsevier, vol. 141(C), pages 247-259.
    13. Magdalena Dołżyńska & Sławomir Obidziński & Małgorzata Kowczyk-Sadowy & Małgorzata Krasowska, 2019. "Densification and Combustion of Cherry Stones," Energies, MDPI, vol. 12(16), pages 1-15, August.
    14. Grzegorz Zając & Grzegorz Maj & Joanna Szyszlak-Bargłowicz & Tomasz Słowik & Paweł Krzaczek & Wojciech Gołębiowski & Marcin Dębowski, 2020. "Evaluation of the Properties and Usefulness of Ashes from the Corn Grain Drying Process Biomass," Energies, MDPI, vol. 13(5), pages 1-16, March.
    15. Aneta Szymajda & Grażyna Łaska & Magdalena Joka, 2021. "Assessment of Cow Dung Pellets as a Renewable Solid Fuel in Direct Combustion Technologies," Energies, MDPI, vol. 14(4), pages 1-15, February.
    16. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    17. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    19. Małgorzata Wzorek & Robert Junga & Ersel Yilmaz & Bohdan Bozhenko, 2021. "Thermal Decomposition of Olive-Mill Byproducts: A TG-FTIR Approach," Energies, MDPI, vol. 14(14), pages 1-16, July.
    20. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4687-:d:295949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.