IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3637-d270163.html
   My bibliography  Save this article

Optimizing Water Droplet Diameter of Spray Cooling for Dairy Cow in Summer Based on Enthalpy Difference Theory

Author

Listed:
  • Tao Ding

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Baoxi Sun

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
    Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, Beijing 100083, China)

  • Zhengxiang Shi

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
    Key Laboratory of Agricultural Engineering in Agricultural Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China)

  • Baoming Li

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
    Key Laboratory of Agricultural Engineering in Agricultural Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China)

Abstract

Spray cooling is widely used in relieving heat stress in dairy cows during summer, in which the cooling effect is highly correlated to the diameter of water droplet. To optimize the average diameter of spraying droplet (ADSD) in the process of heat transfer, a theoretical analysis was performed based on the enthalpy difference theory in this study. A platform was built to simulate the processes of spray cooling and its heat stress alleviation to dairy cows in field, and a field experiment was applied to verify the diameter of water droplets suitable for spray cooling. Heat exchange was calculated for eighteen different ADSD in three different environment conditions in the laboratory. The spraying droplets with eighteen diameters were formed by using six different nozzles under the combinations of three pressures and two wind speeds conditions, which were controlled by heaters. The relationship between the ADSD and heat exchange was established with the purpose to determine the appropriate diameter for practical production. In the field test, body temperature, rectal temperature, and respiratory rate of dairy cows were monitored, and the heat exchange was analyzed to verify the optimal diameter spraying cooling in summer. Results showed that the heat exchange generally increased as ADSD increased, and maximum heat exchanges were reached when the ADSD was averaged at 0.914 mm and 0.995 mm, under which the models of the corresponding nozzles were 9080 and 9010, respectively. After that, the heat exchange decreased as the ADSD continued to increase. Field experiment indicated that the best cooling effect could be achieved with the ADSD of 0.947 mm, and the water consumption for spray cooling was reduced by 22.8% under the scenario.

Suggested Citation

  • Tao Ding & Baoxi Sun & Zhengxiang Shi & Baoming Li, 2019. "Optimizing Water Droplet Diameter of Spray Cooling for Dairy Cow in Summer Based on Enthalpy Difference Theory," Energies, MDPI, vol. 12(19), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3637-:d:270163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3637/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3637/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Haichao & Wu, Xiaozhou & Liu, Zheyi & Granlund, Katja & Lahdelma, Risto & Li, Ji & Teppo, Esa & Yu, Li & Duamu, Lin & Li, Xiangli & Haavisto, Ilkka, 2021. "Waste heat recovery mechanism for coal-fired flue gas in a counter-flow direct contact scrubber," Energy, Elsevier, vol. 237(C).
    2. Paolo Liberati, 2023. "An Active Drying Sensor to Drive Dairy Cow Sprinkling Cooling Systems," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    3. Zheyuan Han & Kaiying Wang & Limin Dai & Kui Li & Xiaoshuai Wang, 2024. "Recent Application of Heat Pump Systems for Environmental Control in Livestock Facilities–A Review," Agriculture, MDPI, vol. 14(12), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3637-:d:270163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.