IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3368-d262958.html
   My bibliography  Save this article

Flow Boiling in Minigap in the Reversed Two-Phase Thermosiphon Loop

Author

Listed:
  • Michał Klugmann

    (Department of Energy and Industrial Apparatus, Gdańsk University of Technology, 80-233 Gdańsk, Pomorskie, Poland)

  • Paweł Dąbrowski

    (Department of Energy and Industrial Apparatus, Gdańsk University of Technology, 80-233 Gdańsk, Pomorskie, Poland)

  • Dariusz Mikielewicz

    (Department of Energy and Industrial Apparatus, Gdańsk University of Technology, 80-233 Gdańsk, Pomorskie, Poland)

Abstract

The paper presents the results of experimental investigations of a model of a heat exchanger featuring a minigap, which is perceived as an evaporator for an inverted thermosiphon. The system works with a single component test fluid. The tested evaporator generates pumping power in the test loop in a way similar to the mammoth pump. The tests regarded a module of the heat exchanger, consisting of a hot leg and a cold leg with the width by the length of 0.1 × 0.2 m, heated by a uniform heat flux. In the tests, the minigaps of 1, 2 and 3 mm were formed. Two fluids, namely, distilled water and ethanol, were tested in the facility. Two-phase flow structures for both working fluids and various operational parameters, together with comprehensive visualization material, are presented. The specifics of pressure changes and its influence on operating parameters and flow structure are discussed.

Suggested Citation

  • Michał Klugmann & Paweł Dąbrowski & Dariusz Mikielewicz, 2019. "Flow Boiling in Minigap in the Reversed Two-Phase Thermosiphon Loop," Energies, MDPI, vol. 12(17), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3368-:d:262958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3368/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3368/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Dongliang & Martini, Christine Elizabeth & Jiang, Siyu & Ma, Yaoguang & Zhai, Yao & Tan, Gang & Yin, Xiaobo & Yang, Ronggui, 2017. "Development of a single-phase thermosiphon for cold collection and storage of radiative cooling," Applied Energy, Elsevier, vol. 205(C), pages 1260-1269.
    2. Smyth, M. & Quinlan, P. & Mondol, J.D. & Zacharopoulos, A. & McLarnon, D. & Pugsley, A., 2018. "The experimental evaluation and improvements of a novel thermal diode pre-heat solar water heater under simulated solar conditions," Renewable Energy, Elsevier, vol. 121(C), pages 116-122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominika Babička Fialová & Zdeněk Jegla, 2021. "Experimentally Verified Flow Distribution Model for a Composite Modelling System," Energies, MDPI, vol. 14(6), pages 1-24, March.
    2. Daniel Chludziński & Michał Duda, 2020. "A New Concept and a Test of a Bubble Pump System for Passive Heat Transport from Solar Collectors," Energies, MDPI, vol. 13(5), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    2. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    3. Byoungsu Ko & Dasol Lee & Trevon Badloe & Junsuk Rho, 2018. "Metamaterial-Based Radiative Cooling: Towards Energy-Free All-Day Cooling," Energies, MDPI, vol. 12(1), pages 1-14, December.
    4. Farzan, Hadi & Ameri, Mehran & Mahmoudi, Mojtaba, 2023. "Thermal assessment of a new planar thermal diode integrated collector storage solar water heater in different partial vacuums: An experimental study," Renewable Energy, Elsevier, vol. 208(C), pages 119-129.
    5. Muhumuza, Ronald & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn & Pugsley, Adrian & Giuzio, Giovanni Francesco & Kurmis, Danas, 2019. "Experimental investigation of horizontally operating thermal diode solar water heaters with differing absorber materials under simulated conditions," Renewable Energy, Elsevier, vol. 138(C), pages 1051-1064.
    6. Barone, G. & Buonomano, A. & Palmieri, V. & Palombo, A., 2022. "A prototypal high-vacuum integrated collector storage solar water heater: Experimentation, design, and optimization through a new in-house 3D dynamic simulation model," Energy, Elsevier, vol. 238(PC).
    7. Aili, Ablimit & Zhao, Dongliang & Tan, Gang & Yin, Xiaobo & Yang, Ronggui, 2021. "Reduction of water consumption in thermal power plants with radiative sky cooling," Applied Energy, Elsevier, vol. 302(C).
    8. Zhang, Kai & Zhao, Dongliang & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2018. "Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA," Applied Energy, Elsevier, vol. 224(C), pages 371-381.
    9. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    10. Smyth, Mervyn & Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Mondol, Jayanta & Muhumuza, Ronald & Pugsley, Adrian & Zacharopoulos, Aggelos, 2020. "Modelling and experimental evaluation of an innovative Integrated Collector Storage Solar Water Heating (ICSSWH) prototype," Renewable Energy, Elsevier, vol. 157(C), pages 974-986.
    11. Jia, Linrui & Lu, Lin & Chen, Jianheng, 2023. "Exploring the cooling potential maps of a radiative sky cooling radiator-assisted ground source heat pump system in China," Applied Energy, Elsevier, vol. 349(C).
    12. Yuan, Jinchao & Yin, Hongle & Yuan, Dan & Yang, Yongjian & Xu, Shaoyu, 2022. "On daytime radiative cooling using spectrally selective metamaterial based building envelopes," Energy, Elsevier, vol. 242(C).
    13. Kiyaee, Soroush & Khalilmoghadam, Pooria & Behshad Shafii, Mohammad & Moshfegh, Alireza Z. & Hu, Mingke, 2022. "Investigation of a radiative sky cooling module using phase change material as the energy storage," Applied Energy, Elsevier, vol. 321(C).
    14. Fang, Hong & Zhao, Dongliang & Yuan, Jinchao & Aili, Ablimit & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2019. "Performance evaluation of a metamaterial-based new cool roof using improved Roof Thermal Transfer Value model," Applied Energy, Elsevier, vol. 248(C), pages 589-599.
    15. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    16. Hu, Mingke & Zhao, Bin & Ao, Xianze & Ren, Xiao & Cao, Jingyu & Wang, Qiliang & Su, Yuehong & Pei, Gang, 2020. "Performance assessment of a trifunctional system integrating solar PV, solar thermal, and radiative sky cooling," Applied Energy, Elsevier, vol. 260(C).
    17. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Jiao, Dongsheng & Pei, Gang, 2019. "Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3368-:d:262958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.