IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2382-d168777.html
   My bibliography  Save this article

Energy Saving of Composite Agglomeration Process (CAP) by Optimized Distribution of Pelletized Feed

Author

Listed:
  • Guanghui Li

    (School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

  • Chen Liu

    (School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

  • Zhengwei Yu

    (School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

  • Mingjun Rao

    (School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

  • Qiang Zhong

    (School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

  • Yuanbo Zhang

    (School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

  • Tao Jiang

    (School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

Abstract

The composite agglomeration process (CAP) aims at sintering a pelletized feed and a matrix feed together to produce a high-quality burden for a blast furnace. The pelletized feed is balled from fine iron concentrate or refractory iron-bearing resources, while the matrix feed is granulated from iron ore fines, fuels, fluxes and so on. Through mathematical calculation, heat accumulation regularity and heat-homogenizing of the sinter bed are acquired in CAP when pelletized feed is uniformly distributed. Then they are studied in the composite agglomeration process with optimized pelletized feed distribution, which is a novel and perfect sinter bed structure. Results show that large heat input gaps exist in the sinter bed under condition of even sinter mixture distribution, and it is very difficult to realize bed heat-homogenization by directly varying the solid fuel dosage among each layer. An optimized pelletized feed distribution realizes more heat in the upper layer together with heat-homogenization of the middle-lower layer when the proportions of pellets increase first in the middle-upper layer and then decrease in the middle-lower layer of the sinter bed. Under these circumstances, the sinter bed has much better available accumulation ratios with a maximum value of 78.29%, and possesses a greater total heat input of 6754.27 MJ when the coke breeze remains at the original dosage. To make full use of the available heat accumulation and adjust the pellet distribution, a good energy saving effect is obtained because the coke breeze mass declines by 13.91 kg/t-sinter. The current gross heat inputs of each unit are reduced remarkably, leading to a total heat input decrease of 25.95%. In pot tests of CAP, the differences of thermal parameters in whole bed are obviously reduced with the optimized pelletized feed distribution, which contributes to sinter homogeneity and energy savings.

Suggested Citation

  • Guanghui Li & Chen Liu & Zhengwei Yu & Mingjun Rao & Qiang Zhong & Yuanbo Zhang & Tao Jiang, 2018. "Energy Saving of Composite Agglomeration Process (CAP) by Optimized Distribution of Pelletized Feed," Energies, MDPI, vol. 11(9), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2382-:d:168777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Zhilong & Wang, Jingyu & Wei, Shangshang & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2017. "Optimization of gaseous fuel injection for saving energy consumption and improving imbalance of heat distribution in iron ore sintering," Applied Energy, Elsevier, vol. 207(C), pages 230-242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.
    2. Carmen de la Cruz-Lovera & Francisco Manzano-Agugliaro & Esther Salmerón-Manzano & José-Luis de la Cruz-Fernández & Alberto-Jesus Perea-Moreno, 2019. "Date Seeds ( Phoenix dactylifera L. ) Valorization for Boilers in the Mediterranean Climate," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    3. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    4. Tomasz Kalak, 2023. "Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future," Energies, MDPI, vol. 16(4), pages 1-25, February.
    5. Miguel-Angel Perea-Moreno & Francisco Manzano-Agugliaro & Alberto-Jesus Perea-Moreno, 2018. "Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings," Sustainability, MDPI, vol. 10(10), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjie Ni & Haifeng Li & Yingyi Zhang & Zongshu Zou, 2019. "Effects of Fuel Type and Operation Parameters on Combustion and NO x Emission of the Iron Ore Sintering Process," Energies, MDPI, vol. 12(2), pages 1-21, January.
    2. YuSheng Kong & Rabnawaz Khan, 2019. "To examine environmental pollution by economic growth and their impact in an environmental Kuznets curve (EKC) among developed and developing countries," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-23, March.
    3. Gul, Eid & Riva, Lorenzo & Nielsen, Henrik Kofoed & Yang, Haiping & Zhou, Hewen & Yang, Qing & Skreiberg, Øyvind & Wang, Liang & Barbanera, Marco & Zampilli, Mauro & Bartocci, Pietro & Fantozzi, Franc, 2021. "Substitution of coke with pelletized biocarbon in the European and Chinese steel industries: An LCA analysis," Applied Energy, Elsevier, vol. 304(C).
    4. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    5. Juntao Han & Guofeng Lou & Sizong Zhang & Zhi Wen & Xunliang Liu & Jiada Liu, 2019. "The Effects of Coke Parameters and Circulating Flue Gas Characteristics on NOx Emission during Flue Gas Recirculation Sintering Process," Energies, MDPI, vol. 12(20), pages 1-20, October.
    6. Zhang, Xiao-Hui & Feng, Peng & Xu, Jia-Rui & Feng, Li-Bin & Qing, Shan, 2020. "Numerical research on combining flue gas recirculation sintering and fuel layered distribution sintering in the iron ore sintering process," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2382-:d:168777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.