IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1518-d151878.html
   My bibliography  Save this article

Optimizing Waste Heat Utilization in Vehicle Bio-Methane Plants

Author

Listed:
  • Feng Zhen

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, NO. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, China
    CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Jia Zhang

    (Guangzhou Special Pressure Equipment Inspection and Research Institute, Guangzhou 510000, China)

  • Wenzhe Li

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Yongming Sun

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, NO. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, China
    CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China)

  • Xiaoying Kong

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, NO. 2 Nengyuan Road, Tianhe District, Guangzhou 510640, China
    CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China)

Abstract

Current vehicle bio-methane plants have drawbacks associated with high energy consumption and low recovery levels of waste heat produced during the gasification process. In this paper, we have optimized the performance of heat exchange networks using pinch analysis and through the introduction of heat pump integration technology. Optimal results for the heat exchange network of a bio-gas system producing 10,000 cubic meters have been calculated using a pinch point temperature of 50 °C, a minimum heating utility load of 234.02 kW and a minimum cooling utility load of 201.25 kW. These optimal parameters are predicted to result in energy savings of 116.08 kW (19.75%), whilst the introduction of new heat pump integration technology would afford further energy savings of 95.55 kW (16.25%). The combined energy saving value of 211.63 kW corresponds to a total energy saving of 36%, with economic analysis revealing that these reforms would give annual savings of 103,300 USD. The installation costs required to introduce these process modifications are predicted to require an initial investment of 423,200 USD, which would take 4.1 years to reach payout time based on predicted annual energy savings.

Suggested Citation

  • Feng Zhen & Jia Zhang & Wenzhe Li & Yongming Sun & Xiaoying Kong, 2018. "Optimizing Waste Heat Utilization in Vehicle Bio-Methane Plants," Energies, MDPI, vol. 11(6), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1518-:d:151878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valiani, Saba & Tahouni, Nassim & Panjeshahi, M. Hassan, 2017. "Optimization of pre-combustion capture for thermal power plants using Pinch Analysis," Energy, Elsevier, vol. 119(C), pages 950-960.
    2. Panepinto, Deborah & Fiore, Silvia & Zappone, Mariantonia & Genon, Giuseppe & Meucci, Lorenza, 2016. "Evaluation of the energy efficiency of a large wastewater treatment plant in Italy," Applied Energy, Elsevier, vol. 161(C), pages 404-411.
    3. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2016. "Sensitivity analysis of hybrid power systems using Power Pinch Analysis considering Feed-in Tariff," Energy, Elsevier, vol. 116(P2), pages 1260-1268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2020. "Graphical customisation of process and utility changes for heat exchanger network retrofit using individual stream temperature versus enthalpy plot," Energy, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    2. Krieg, Thomas & Enzmann, Franziska & Sell, Dieter & Schrader, Jens & Holtmann, Dirk, 2017. "Simulation of the current generation of a microbial fuel cell in a laboratory wastewater treatment plant," Applied Energy, Elsevier, vol. 195(C), pages 942-949.
    3. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    4. Ali, Syed Muhammad Hassan & Lenzen, Manfred & Sack, Fabian & Yousefzadeh, Moslem, 2020. "Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids," Applied Energy, Elsevier, vol. 268(C).
    5. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Jorge Alejandro Silva, 2023. "Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    7. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Norbu, Sonam & Bandyopadhyay, Santanu, 2017. "Power Pinch Analysis for optimal sizing of renewable-based isolated system with uncertainties," Energy, Elsevier, vol. 135(C), pages 466-475.
    9. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    10. Mehdi Sharif Shourjeh & Przemysław Kowal & Jakub Drewnowski & Bartosz Szeląg & Aleksandra Szaja & Grzegorz Łagód, 2020. "Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization," Energies, MDPI, vol. 13(21), pages 1-21, November.
    11. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    12. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    13. Radini, Serena & Marinelli, Enrico & Akyol, Çağrı & Eusebi, Anna Laura & Vasilaki, Vasileia & Mancini, Adriano & Frontoni, Emanuele & Bischetti, Gian Battista & Gandolfi, Claudio & Katsou, Evina & Fat, 2021. "Urban water-energy-food-climate nexus in integrated wastewater and reuse systems: Cyber-physical framework and innovations," Applied Energy, Elsevier, vol. 298(C).
    14. Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).
    15. Lam, Chor-Man & Leng, Ling & Chen, Pi-Cheng & Lee, Po-Heng & Hsu, Shu-Chien, 2017. "Eco-efficiency analysis of non-potable water systems in domestic buildings," Applied Energy, Elsevier, vol. 202(C), pages 293-307.
    16. Andrea Guerrini & Giulia Romano & Alessandro Indipendenza, 2017. "Energy Efficiency Drivers in Wastewater Treatment Plants: A Double Bootstrap DEA Analysis," Sustainability, MDPI, vol. 9(7), pages 1-13, June.
    17. Mattia Cottes & Matia Mainardis & Daniele Goi & Patrizia Simeoni, 2020. "Demand-Response Application in Wastewater Treatment Plants Using Compressed Air Storage System: A Modelling Approach," Energies, MDPI, vol. 13(18), pages 1-15, September.
    18. Guven, Huseyin & Ersahin, Mustafa Evren & Dereli, Recep Kaan & Ozgun, Hale & Isik, Isa & Ozturk, Izzet, 2019. "Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal wastewater and food waste," Energy, Elsevier, vol. 172(C), pages 1027-1036.
    19. Grzegorz Bartnicki & Piotr Ziembicki & Marcin Klimczak & Agnieszka Kalitka, 2022. "The Potential of Heat Recovery from Wastewater Considering the Protection of Wastewater Treatment Plant Technology," Energies, MDPI, vol. 16(1), pages 1-15, December.
    20. Michela Gallo & Desara Malluta & Adriana Del Borghi & Erica Gagliano, 2024. "A Critical Review on Methodologies for the Energy Benchmarking of Wastewater Treatment Plants," Sustainability, MDPI, vol. 16(5), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1518-:d:151878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.