IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1187-d145186.html
   My bibliography  Save this article

An Advanced Control Technique for Floating Offshore Wind Turbines Based on More Compact Barge Platforms

Author

Listed:
  • Joannes Olondriz

    (IK4-IKERLAN, Paseo J.M a Arizmendiarrieta 2, 20500 Arrasate-Mondragón, Gipuzkoa, Spain)

  • Iker Elorza

    (IK4-IKERLAN, Paseo J.M a Arizmendiarrieta 2, 20500 Arrasate-Mondragón, Gipuzkoa, Spain)

  • Josu Jugo

    (Department of Electricity and Electronics, University of the Basque Country UPV/EHU, Bo. Sarriena s/n, 48940 Leioa, Bizkaia, Spain)

  • Santi Alonso-Quesada

    (Department of Electricity and Electronics, University of the Basque Country UPV/EHU, Bo. Sarriena s/n, 48940 Leioa, Bizkaia, Spain)

  • Aron Pujana-Arrese

    (IK4-IKERLAN, Paseo J.M a Arizmendiarrieta 2, 20500 Arrasate-Mondragón, Gipuzkoa, Spain)

Abstract

Hydrodynamic Floating Offshore Wind Turbine (FOWT) platform specifications are typically dominated by seaworthiness and maximum operating platform-pitch angle-related requirements. However, such specifications directly impact the challenge posed by an FOWT in terms of control design. The conventional FOWT systems are typically based on large, heavy floating platforms, which are less likely to suffer from the negative damping effect caused by the excessive coupling between blade-pitch control and platform-pitch motion. An advanced control technique is presented here to increase system stability for barge type platforms. Such a technique mitigates platform-pitch motions and improves the generator speed regulation, while maintaining blade-pitch activity and reducing blade and tower loads. The NREL’s 5MW + ITI Energy barge reference model is taken as a basis for this work. Furthermore, the capabilities of the proposed controller for performing with a more compact and less hydrodynamically stable barge platform is analysed, with encouraging results.

Suggested Citation

  • Joannes Olondriz & Iker Elorza & Josu Jugo & Santi Alonso-Quesada & Aron Pujana-Arrese, 2018. "An Advanced Control Technique for Floating Offshore Wind Turbines Based on More Compact Barge Platforms," Energies, MDPI, vol. 11(5), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1187-:d:145186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonutti, Raffaello & Peyrard, Christophe & Johanning, Lars & Incecik, Atilla & Ingram, David, 2016. "The effects of wind-induced inclination on the dynamics of semi-submersible floating wind turbines in the time domain," Renewable Energy, Elsevier, vol. 88(C), pages 83-94.
    2. Søren Christiansen & Thomas Bak & Torben Knudsen, 2013. "Damping Wind and Wave Loads on a Floating Wind Turbine," Energies, MDPI, vol. 6(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwansu Kim & Hyunjong Kim & Hyungyu Kim & Jaehoon Son & Jungtae Kim & Jongpo Park, 2021. "Resonance Avoidance Control Algorithm for Semi-Submersible Floating Offshore Wind Turbine," Energies, MDPI, vol. 14(14), pages 1-17, July.
    2. Joannes Olondriz & Josu Jugo & Iker Elorza & Santiago Alonso-Quesada and Aron Pujana-Arrese, 2019. "A Feedback Control Loop Optimisation Methodology for Floating Offshore Wind Turbines," Energies, MDPI, vol. 12(18), pages 1-12, September.
    3. Unai Elosegui & Igor Egana & Alain Ulazia & Gabriel Ibarra-Berastegi, 2018. "Pitch Angle Misalignment Correction Based on Benchmarking and Laser Scanner Measurement in Wind Farms," Energies, MDPI, vol. 11(12), pages 1-20, December.
    4. Wakui, Tetsuya & Nagamura, Atsushi & Yokoyama, Ryohei, 2021. "Stabilization of power output and platform motion of a floating offshore wind turbine-generator system using model predictive control based on previewed disturbances," Renewable Energy, Elsevier, vol. 173(C), pages 105-127.
    5. Joannes Olondriz & Wei Yu & Josu Jugo & Frank Lemmer & Iker Elorza & Santiago Alonso-Quesada & Aron Pujana-Arrese, 2018. "Using Multiple Fidelity Numerical Models for Floating Offshore Wind Turbine Advanced Control Design," Energies, MDPI, vol. 11(9), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Zhou & Qing Xiao & Yuanchuan Liu & Atilla Incecik & Christophe Peyrard & Sunwei Li & Guang Pan, 2019. "Numerical Modelling of Dynamic Responses of a Floating Offshore Wind Turbine Subject to Focused Waves," Energies, MDPI, vol. 12(18), pages 1-31, September.
    2. Han, Chenlu & Nagamune, Ryozo, 2020. "Platform position control of floating wind turbines using aerodynamic force," Renewable Energy, Elsevier, vol. 151(C), pages 896-907.
    3. Fang, Yuan & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng & Yang, He, 2020. "Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion," Energy, Elsevier, vol. 192(C).
    4. Xiaohui Zeng & Yang Yu & Liang Zhang & Qingquan Liu & Han Wu, 2014. "A New Energy-Absorbing Device for Motion Suppression in Deep-Sea Floating Platforms," Energies, MDPI, vol. 8(1), pages 1-22, December.
    5. Wakui, Tetsuya & Yoshimura, Motoki & Yokoyama, Ryohei, 2017. "Multiple-feedback control of power output and platform pitching motion for a floating offshore wind turbine-generator system," Energy, Elsevier, vol. 141(C), pages 563-578.
    6. Meng, Qingshen & Hua, Xugang & Chen, Chao & Zhou, Shuai & Liu, Feipeng & Chen, Zhengqing, 2022. "Analytical study on the aerodynamic and hydrodynamic damping of the platform in an operating spar-type floating offshore wind turbine," Renewable Energy, Elsevier, vol. 198(C), pages 772-788.
    7. Pustina, L. & Serafini, J. & Pasquali, C. & Solero, L. & Lidozzi, A. & Gennaretti, M., 2023. "A novel resonant controller for sea-induced rotor blade vibratory loads reduction on floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Antonutti, Raffaello & Peyrard, Christophe & Johanning, Lars & Incecik, Atilla & Ingram, David, 2016. "The effects of wind-induced inclination on the dynamics of semi-submersible floating wind turbines in the time domain," Renewable Energy, Elsevier, vol. 88(C), pages 83-94.
    9. Díaz, H. & Guedes Soares, C., 2020. "An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Goupee, Andrew J. & Kimball, Richard W. & Dagher, Habib J., 2017. "Experimental observations of active blade pitch and generator control influence on floating wind turbine response," Renewable Energy, Elsevier, vol. 104(C), pages 9-19.
    11. Yang Huang & Decheng Wan, 2019. "Investigation of Interference Effects Between Wind Turbine and Spar-Type Floating Platform Under Combined Wind-Wave Excitation," Sustainability, MDPI, vol. 12(1), pages 1-30, December.
    12. Sang Lee & Matthew Churchfield & Frederick Driscoll & Senu Sirnivas & Jason Jonkman & Patrick Moriarty & Bjόrn Skaare & Finn Gunnar Nielsen & Erik Byklum, 2018. "Load Estimation of Offshore Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-15, July.
    13. Fu, Shifeng & Li, Zheng & Zhu, Weijun & Han, Xingxing & Liang, Xiaoling & Yang, Hua & Shen, Wenzhong, 2023. "Study on aerodynamic performance and wake characteristics of a floating offshore wind turbine under pitch motion," Renewable Energy, Elsevier, vol. 205(C), pages 317-325.
    14. Wei Sun & Mohan Liu & Yi Liang, 2015. "Wind Speed Forecasting Based on FEEMD and LSSVM Optimized by the Bat Algorithm," Energies, MDPI, vol. 8(7), pages 1-23, June.
    15. Díaz, H. & Silva, D. & Bernardo, C. & Guedes Soares, C., 2023. "Micro sitting of floating wind turbines in a wind farm using a multi-criteria framework," Renewable Energy, Elsevier, vol. 204(C), pages 449-474.
    16. Kwansu Kim & Hyunjong Kim & Hyungyu Kim & Jaehoon Son & Jungtae Kim & Jongpo Park, 2021. "Resonance Avoidance Control Algorithm for Semi-Submersible Floating Offshore Wind Turbine," Energies, MDPI, vol. 14(14), pages 1-17, July.
    17. Cian J. Desmond & Jan-Christoph Hinrichs & Jimmy Murphy, 2019. "Uncertainty in the Physical Testing of Floating Wind Energy Platforms’ Accuracy versus Precision," Energies, MDPI, vol. 12(3), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1187-:d:145186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.